| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sssnm | Unicode version | ||
| Description: The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.) |
| Ref | Expression |
|---|---|
| sssnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 2993 |
. . . . . . . . . 10
| |
| 2 | elsni 3416 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
|
| 4 | eleq1 2141 |
. . . . . . . . 9
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . . 8
|
| 6 | 5 | ibd 176 |
. . . . . . 7
|
| 7 | 6 | exlimdv 1740 |
. . . . . 6
|
| 8 | snssi 3529 |
. . . . . 6
| |
| 9 | 7, 8 | syl6 33 |
. . . . 5
|
| 10 | 9 | anc2li 322 |
. . . 4
|
| 11 | eqss 3014 |
. . . 4
| |
| 12 | 10, 11 | syl6ibr 160 |
. . 3
|
| 13 | 12 | com12 30 |
. 2
|
| 14 | eqimss 3051 |
. 2
| |
| 15 | 13, 14 | impbid1 140 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-sn 3404 |
| This theorem is referenced by: eqsnm 3547 |
| Copyright terms: Public domain | W3C validator |