| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssof1 | Unicode version | ||
| Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssof1.s |
|
| suppssof1.o |
|
| suppssof1.a |
|
| suppssof1.b |
|
| suppssof1.d |
|
| Ref | Expression |
|---|---|
| suppssof1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.a |
. . . . . 6
| |
| 2 | ffn 5066 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | suppssof1.b |
. . . . . 6
| |
| 5 | ffn 5066 |
. . . . . 6
| |
| 6 | 4, 5 | syl 14 |
. . . . 5
|
| 7 | suppssof1.d |
. . . . 5
| |
| 8 | inidm 3175 |
. . . . 5
| |
| 9 | eqidd 2082 |
. . . . 5
| |
| 10 | eqidd 2082 |
. . . . 5
| |
| 11 | 3, 6, 7, 7, 8, 9, 10 | offval 5739 |
. . . 4
|
| 12 | 11 | cnveqd 4529 |
. . 3
|
| 13 | 12 | imaeq1d 4687 |
. 2
|
| 14 | 1 | feqmptd 5247 |
. . . . . 6
|
| 15 | 14 | cnveqd 4529 |
. . . . 5
|
| 16 | 15 | imaeq1d 4687 |
. . . 4
|
| 17 | suppssof1.s |
. . . 4
| |
| 18 | 16, 17 | eqsstr3d 3034 |
. . 3
|
| 19 | suppssof1.o |
. . 3
| |
| 20 | funfvex 5212 |
. . . . 5
| |
| 21 | 20 | funfni 5019 |
. . . 4
|
| 22 | 3, 21 | sylan 277 |
. . 3
|
| 23 | 4 | ffvelrnda 5323 |
. . 3
|
| 24 | 18, 19, 22, 23 | suppssov1 5729 |
. 2
|
| 25 | 13, 24 | eqsstrd 3033 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-of 5732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |