ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem5 Unicode version

Theorem prarloclem5 6690
Description: A substitution of zero for  y and  N minus two for  x. Lemma for prarloc 6693. (Contributed by Jim Kingdon, 4-Nov-2019.)
Assertion
Ref Expression
prarloclem5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Distinct variable groups:    x, A, y   
x, L, y    x, N    x, P, y    x, U, y
Allowed substitution hint:    N( y)

Proof of Theorem prarloclem5
StepHypRef Expression
1 prarloclemn 6689 . . . 4  |-  ( ( N  e.  N.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x
)  =  N )
213adant2 957 . . 3  |-  ( ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
323ad2ant2 960 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  ( 2o  +o  x )  =  N )
4 elprnql 6671 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
543ad2ant1 959 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  Q. )
6 simp22 972 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  P  e.  Q. )
7 nqnq0 6631 . . . . . . . . 9  |-  Q.  C_ Q0
87sseli 2995 . . . . . . . 8  |-  ( A  e.  Q.  ->  A  e. Q0 )
9 nq0a0 6647 . . . . . . . 8  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
108, 9syl 14 . . . . . . 7  |-  ( A  e.  Q.  ->  ( A +Q0 0Q0 )  =  A )
11 df-0nq0 6616 . . . . . . . . . 10  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
1211oveq1i 5542 . . . . . . . . 9  |-  (0Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P )
137sseli 2995 . . . . . . . . . 10  |-  ( P  e.  Q.  ->  P  e. Q0 )
14 nq0m0r 6646 . . . . . . . . . 10  |-  ( P  e. Q0  ->  (0Q0 ·Q0  P )  = 0Q0 )
1513, 14syl 14 . . . . . . . . 9  |-  ( P  e.  Q.  ->  (0Q0 ·Q0 
P )  = 0Q0 )
1612, 15syl5reqr 2128 . . . . . . . 8  |-  ( P  e.  Q.  -> 0Q0  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  P ) )
1716oveq2d 5548 . . . . . . 7  |-  ( P  e.  Q.  ->  ( A +Q0 0Q0 )  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
1810, 17sylan9req 2134 . . . . . 6  |-  ( ( A  e.  Q.  /\  P  e.  Q. )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
195, 6, 18syl2anc 403 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
) )
20 simp1r 963 . . . . 5  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  A  e.  L )
2119, 20eqeltrrd 2156 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L )
22 2onn 6117 . . . . . . . . . . . . . . 15  |-  2o  e.  om
23 nna0r 6080 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  om  ->  ( (/) 
+o  2o )  =  2o )
2422, 23ax-mp 7 . . . . . . . . . . . . . 14  |-  ( (/)  +o  2o )  =  2o
2524oveq1i 5542 . . . . . . . . . . . . 13  |-  ( (
(/)  +o  2o )  +o  x )  =  ( 2o  +o  x )
2625eqeq1i 2088 . . . . . . . . . . . 12  |-  ( ( ( (/)  +o  2o )  +o  x )  =  N  <->  ( 2o  +o  x )  =  N )
2726biimpri 131 . . . . . . . . . . 11  |-  ( ( 2o  +o  x )  =  N  ->  (
( (/)  +o  2o )  +o  x )  =  N )
2827opeq1d 3576 . . . . . . . . . 10  |-  ( ( 2o  +o  x )  =  N  ->  <. (
( (/)  +o  2o )  +o  x ) ,  1o >.  =  <. N ,  1o >. )
2928eceq1d 6165 . . . . . . . . 9  |-  ( ( 2o  +o  x )  =  N  ->  [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. N ,  1o >. ]  ~Q  )
3029oveq1d 5547 . . . . . . . 8  |-  ( ( 2o  +o  x )  =  N  ->  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )
3130oveq2d 5548 . . . . . . 7  |-  ( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P
) ) )
3231eleq1d 2147 . . . . . 6  |-  ( ( 2o  +o  x )  =  N  ->  (
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
3332biimprcd 158 . . . . 5  |-  ( ( A  +Q  ( [
<. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U  -> 
( ( 2o  +o  x )  =  N  ->  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
34333ad2ant3 961 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  -> 
( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
35 peano1 4335 . . . . 5  |-  (/)  e.  om
36 opeq1 3570 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. y ,  1o >.  =  <. (/)
,  1o >. )
3736eceq1d 6165 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. y ,  1o >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3837oveq1d 5547 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. y ,  1o >. ] ~Q0 ·Q0 
P )  =  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )
3938oveq2d 5548 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  =  ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) ) )
4039eleq1d 2147 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  <->  ( A +Q0  ( [
<. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L ) )
41 oveq1 5539 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( y  +o  2o )  =  ( (/)  +o  2o ) )
4241oveq1d 5547 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( ( y  +o  2o )  +o  x )  =  ( ( (/)  +o  2o )  +o  x ) )
4342opeq1d 3576 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  <. (
( y  +o  2o )  +o  x ) ,  1o >.  =  <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. )
4443eceq1d 6165 . . . . . . . . . 10  |-  ( y  =  (/)  ->  [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  =  [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  )
4544oveq1d 5547 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P )  =  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )
4645oveq2d 5548 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  =  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) ) )
4746eleq1d 2147 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  +Q  ( [
<. ( ( y  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U  <->  ( A  +Q  ( [ <. (
( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )
4840, 47anbi12d 456 . . . . . 6  |-  ( y  =  (/)  ->  ( ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
)  <->  ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0 
P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) ) )
4948rspcev 2701 . . . . 5  |-  ( (
(/)  e.  om  /\  (
( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U ) )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5035, 49mpan 414 . . . 4  |-  ( ( ( A +Q0  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( (/)  +o  2o )  +o  x
) ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
5121, 34, 50syl6an 1363 . . 3  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  (
( 2o  +o  x
)  =  N  ->  E. y  e.  om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
5251reximdv 2462 . 2  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  ( E. x  e.  om  ( 2o  +o  x
)  =  N  ->  E. x  e.  om  E. y  e.  om  (
( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P ) )  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) ) )
533, 52mpd 13 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  A  e.  L )  /\  ( N  e.  N.  /\  P  e.  Q.  /\  1o  <N  N )  /\  ( A  +Q  ( [ <. N ,  1o >. ]  ~Q  .Q  P ) )  e.  U )  ->  E. x  e.  om  E. y  e. 
om  ( ( A +Q0  ( [ <. y ,  1o >. ] ~Q0 ·Q0  P )
)  e.  L  /\  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  x ) ,  1o >. ]  ~Q  .Q  P
) )  e.  U
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   (/)c0 3251   <.cop 3401   class class class wbr 3785   omcom 4331  (class class class)co 5532   1oc1o 6017   2oc2o 6018    +o coa 6021   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   Q.cnq 6470    +Q cplq 6472    .Q cmq 6473   ~Q0 ceq0 6476  Q0cnq0 6477  0Q0c0q0 6478   +Q0 cplq0 6479   ·Q0 cmq0 6480   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656
This theorem is referenced by:  prarloclem  6691
  Copyright terms: Public domain W3C validator