| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemnm | Unicode version | ||
| Description: Lemma for resqrex 9912. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| resqrexlemnmsq.n |
|
| resqrexlemnmsq.m |
|
| resqrexlemnmsq.nm |
|
| Ref | Expression |
|---|---|
| resqrexlemnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq |
. . . . . . 7
| |
| 2 | resqrexlemex.a |
. . . . . . 7
| |
| 3 | resqrexlemex.agt0 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | resqrexlemf 9893 |
. . . . . 6
|
| 5 | resqrexlemnmsq.n |
. . . . . 6
| |
| 6 | 4, 5 | ffvelrnd 5324 |
. . . . 5
|
| 7 | 6 | rpred 8773 |
. . . 4
|
| 8 | resqrexlemnmsq.m |
. . . . . 6
| |
| 9 | 4, 8 | ffvelrnd 5324 |
. . . . 5
|
| 10 | 9 | rpred 8773 |
. . . 4
|
| 11 | 7, 10 | resubcld 7485 |
. . 3
|
| 12 | 7 | resqcld 9631 |
. . . . 5
|
| 13 | 10 | resqcld 9631 |
. . . . 5
|
| 14 | 12, 13 | resubcld 7485 |
. . . 4
|
| 15 | 2cn 8110 |
. . . . . . 7
| |
| 16 | expm1t 9504 |
. . . . . . 7
| |
| 17 | 15, 5, 16 | sylancr 405 |
. . . . . 6
|
| 18 | 2nn 8193 |
. . . . . . . . 9
| |
| 19 | 18 | a1i 9 |
. . . . . . . 8
|
| 20 | 5 | nnnn0d 8341 |
. . . . . . . 8
|
| 21 | 19, 20 | nnexpcld 9627 |
. . . . . . 7
|
| 22 | 21 | nnrpd 8772 |
. . . . . 6
|
| 23 | 17, 22 | eqeltrrd 2156 |
. . . . 5
|
| 24 | 23 | rpred 8773 |
. . . 4
|
| 25 | 14, 24 | remulcld 7149 |
. . 3
|
| 26 | 1nn 8050 |
. . . . . . . . 9
| |
| 27 | 26 | a1i 9 |
. . . . . . . 8
|
| 28 | 4, 27 | ffvelrnd 5324 |
. . . . . . 7
|
| 29 | 19 | nnzd 8468 |
. . . . . . 7
|
| 30 | 28, 29 | rpexpcld 9629 |
. . . . . 6
|
| 31 | 4re 8116 |
. . . . . . . . 9
| |
| 32 | 4pos 8136 |
. . . . . . . . 9
| |
| 33 | 31, 32 | elrpii 8737 |
. . . . . . . 8
|
| 34 | 33 | a1i 9 |
. . . . . . 7
|
| 35 | 5 | nnzd 8468 |
. . . . . . . 8
|
| 36 | peano2zm 8389 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl 14 |
. . . . . . 7
|
| 38 | 34, 37 | rpexpcld 9629 |
. . . . . 6
|
| 39 | 30, 38 | rpdivcld 8791 |
. . . . 5
|
| 40 | 39 | rpred 8773 |
. . . 4
|
| 41 | 40, 24 | remulcld 7149 |
. . 3
|
| 42 | 6, 9 | rpaddcld 8789 |
. . . . . . 7
|
| 43 | 42, 23 | rpmulcld 8790 |
. . . . . 6
|
| 44 | 43 | rpred 8773 |
. . . . 5
|
| 45 | 2 | adantr 270 |
. . . . . . . . 9
|
| 46 | 3 | adantr 270 |
. . . . . . . . 9
|
| 47 | 5 | adantr 270 |
. . . . . . . . 9
|
| 48 | 8 | adantr 270 |
. . . . . . . . 9
|
| 49 | simpr 108 |
. . . . . . . . 9
| |
| 50 | 1, 45, 46, 47, 48, 49 | resqrexlemdecn 9898 |
. . . . . . . 8
|
| 51 | 10 | adantr 270 |
. . . . . . . . 9
|
| 52 | 7 | adantr 270 |
. . . . . . . . 9
|
| 53 | difrp 8770 |
. . . . . . . . 9
| |
| 54 | 51, 52, 53 | syl2anc 403 |
. . . . . . . 8
|
| 55 | 50, 54 | mpbid 145 |
. . . . . . 7
|
| 56 | 55 | rpge0d 8777 |
. . . . . 6
|
| 57 | 7 | recnd 7147 |
. . . . . . . . 9
|
| 58 | 57 | subidd 7407 |
. . . . . . . 8
|
| 59 | fveq2 5198 |
. . . . . . . . 9
| |
| 60 | 59 | oveq2d 5548 |
. . . . . . . 8
|
| 61 | 58, 60 | sylan9req 2134 |
. . . . . . 7
|
| 62 | 0re 7119 |
. . . . . . . 8
| |
| 63 | 62 | eqlei 7204 |
. . . . . . 7
|
| 64 | 61, 63 | syl 14 |
. . . . . 6
|
| 65 | resqrexlemnmsq.nm |
. . . . . . 7
| |
| 66 | 8 | nnzd 8468 |
. . . . . . . 8
|
| 67 | zleloe 8398 |
. . . . . . . 8
| |
| 68 | 35, 66, 67 | syl2anc 403 |
. . . . . . 7
|
| 69 | 65, 68 | mpbid 145 |
. . . . . 6
|
| 70 | 56, 64, 69 | mpjaodan 744 |
. . . . 5
|
| 71 | 1red 7134 |
. . . . . 6
| |
| 72 | 21 | nnrecred 8085 |
. . . . . . . . . . 11
|
| 73 | 72 | recnd 7147 |
. . . . . . . . . 10
|
| 74 | 73 | addid1d 7257 |
. . . . . . . . 9
|
| 75 | 0red 7120 |
. . . . . . . . . 10
| |
| 76 | 1, 2, 3 | resqrexlemlo 9899 |
. . . . . . . . . . 11
|
| 77 | 5, 76 | mpdan 412 |
. . . . . . . . . 10
|
| 78 | 9 | rpgt0d 8776 |
. . . . . . . . . 10
|
| 79 | 72, 75, 7, 10, 77, 78 | lt2addd 7667 |
. . . . . . . . 9
|
| 80 | 74, 79 | eqbrtrrd 3807 |
. . . . . . . 8
|
| 81 | 7, 10 | readdcld 7148 |
. . . . . . . . 9
|
| 82 | 71, 81, 22 | ltdivmul2d 8826 |
. . . . . . . 8
|
| 83 | 80, 82 | mpbid 145 |
. . . . . . 7
|
| 84 | 17 | oveq2d 5548 |
. . . . . . 7
|
| 85 | 83, 84 | breqtrd 3809 |
. . . . . 6
|
| 86 | 71, 44, 85 | ltled 7228 |
. . . . 5
|
| 87 | 11, 44, 70, 86 | lemulge11d 8015 |
. . . 4
|
| 88 | 11 | recnd 7147 |
. . . . . 6
|
| 89 | 81 | recnd 7147 |
. . . . . 6
|
| 90 | 23 | rpcnd 8775 |
. . . . . 6
|
| 91 | 88, 89, 90 | mulassd 7142 |
. . . . 5
|
| 92 | 88, 89 | mulcomd 7140 |
. . . . . . 7
|
| 93 | 10 | recnd 7147 |
. . . . . . . 8
|
| 94 | subsq 9581 |
. . . . . . . 8
| |
| 95 | 57, 93, 94 | syl2anc 403 |
. . . . . . 7
|
| 96 | 92, 95 | eqtr4d 2116 |
. . . . . 6
|
| 97 | 96 | oveq1d 5547 |
. . . . 5
|
| 98 | 91, 97 | eqtr3d 2115 |
. . . 4
|
| 99 | 87, 98 | breqtrd 3809 |
. . 3
|
| 100 | 1, 2, 3, 5, 8, 65 | resqrexlemnmsq 9903 |
. . . 4
|
| 101 | 14, 40, 23, 100 | ltmul1dd 8829 |
. . 3
|
| 102 | 11, 25, 41, 99, 101 | lelttrd 7234 |
. 2
|
| 103 | 40 | recnd 7147 |
. . . . . 6
|
| 104 | 19 | nnrpd 8772 |
. . . . . . . 8
|
| 105 | 104, 37 | rpexpcld 9629 |
. . . . . . 7
|
| 106 | 105 | rpcnd 8775 |
. . . . . 6
|
| 107 | 2cnd 8112 |
. . . . . 6
| |
| 108 | 103, 106, 107 | mulassd 7142 |
. . . . 5
|
| 109 | 30 | rpcnd 8775 |
. . . . . . . 8
|
| 110 | 38 | rpcnd 8775 |
. . . . . . . 8
|
| 111 | 38 | rpap0d 8779 |
. . . . . . . 8
|
| 112 | 109, 110, 106, 111 | div32apd 7900 |
. . . . . . 7
|
| 113 | 4d2e2 8192 |
. . . . . . . . . . . 12
| |
| 114 | 113 | oveq1i 5542 |
. . . . . . . . . . 11
|
| 115 | 34 | rpcnd 8775 |
. . . . . . . . . . . 12
|
| 116 | 104 | rpap0d 8779 |
. . . . . . . . . . . 12
|
| 117 | nnm1nn0 8329 |
. . . . . . . . . . . . 13
| |
| 118 | 5, 117 | syl 14 |
. . . . . . . . . . . 12
|
| 119 | 115, 107, 116, 118 | expdivapd 9619 |
. . . . . . . . . . 11
|
| 120 | 114, 119 | syl5eqr 2127 |
. . . . . . . . . 10
|
| 121 | 120 | oveq2d 5548 |
. . . . . . . . 9
|
| 122 | 105 | rpap0d 8779 |
. . . . . . . . . 10
|
| 123 | 110, 106, 111, 122 | recdivapd 7894 |
. . . . . . . . 9
|
| 124 | 121, 123 | eqtrd 2113 |
. . . . . . . 8
|
| 125 | 124 | oveq2d 5548 |
. . . . . . 7
|
| 126 | 112, 125 | eqtr4d 2116 |
. . . . . 6
|
| 127 | 126 | oveq1d 5547 |
. . . . 5
|
| 128 | 108, 127 | eqtr3d 2115 |
. . . 4
|
| 129 | 106, 122 | recclapd 7869 |
. . . . 5
|
| 130 | 109, 129, 107 | mul32d 7261 |
. . . 4
|
| 131 | 128, 130 | eqtrd 2113 |
. . 3
|
| 132 | 109, 107 | mulcld 7139 |
. . . 4
|
| 133 | 132, 106, 122 | divrecapd 7880 |
. . 3
|
| 134 | 131, 133 | eqtr4d 2116 |
. 2
|
| 135 | 102, 134 | breqtrd 3809 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 |
| This theorem is referenced by: resqrexlemcvg 9905 |
| Copyright terms: Public domain | W3C validator |