ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdiv Unicode version

Theorem zdiv 8435
Description: Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Distinct variable groups:    k, M    k, N

Proof of Theorem zdiv
StepHypRef Expression
1 nnap0 8068 . . 3  |-  ( M  e.  NN  ->  M #  0 )
21adantr 270 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  M #  0 )
3 nncn 8047 . . 3  |-  ( M  e.  NN  ->  M  e.  CC )
4 zcn 8356 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 zcn 8356 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
6 divcanap3 7786 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  (
( M  x.  k
)  /  M )  =  k )
763coml 1145 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  M #  0  /\  k  e.  CC )  ->  (
( M  x.  k
)  /  M )  =  k )
873expa 1138 . . . . . . . . . . 11  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  CC )  ->  ( ( M  x.  k )  /  M
)  =  k )
95, 8sylan2 280 . . . . . . . . . 10  |-  ( ( ( M  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  ( ( M  x.  k )  /  M
)  =  k )
1093adantl2 1095 . . . . . . . . 9  |-  ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  ->  (
( M  x.  k
)  /  M )  =  k )
11 oveq1 5539 . . . . . . . . 9  |-  ( ( M  x.  k )  =  N  ->  (
( M  x.  k
)  /  M )  =  ( N  /  M ) )
1210, 11sylan9req 2134 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  =  ( N  /  M ) )
13 simplr 496 . . . . . . . 8  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  k  e.  ZZ )
1412, 13eqeltrrd 2156 . . . . . . 7  |-  ( ( ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  /\  k  e.  ZZ )  /\  ( M  x.  k )  =  N )  ->  ( N  /  M )  e.  ZZ )
1514exp31 356 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
k  e.  ZZ  ->  ( ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) ) )
1615rexlimdv 2476 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
17 divcanap2 7768 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
18173com12 1142 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( M  x.  ( N  /  M ) )  =  N )
19 oveq2 5540 . . . . . . . . 9  |-  ( k  =  ( N  /  M )  ->  ( M  x.  k )  =  ( M  x.  ( N  /  M
) ) )
2019eqeq1d 2089 . . . . . . . 8  |-  ( k  =  ( N  /  M )  ->  (
( M  x.  k
)  =  N  <->  ( M  x.  ( N  /  M
) )  =  N ) )
2120rspcev 2701 . . . . . . 7  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( M  x.  ( N  /  M ) )  =  N )  ->  E. k  e.  ZZ  ( M  x.  k
)  =  N )
2221expcom 114 . . . . . 6  |-  ( ( M  x.  ( N  /  M ) )  =  N  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2318, 22syl 14 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  ( M  x.  k )  =  N ) )
2416, 23impbid 127 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  M #  0 )  ->  ( E. k  e.  ZZ  ( M  x.  k
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
25243expia 1140 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
263, 4, 25syl2an 283 . 2  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M #  0  -> 
( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) ) )
272, 26mpd 13 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <-> 
( N  /  M
)  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   0cc0 6981    x. cmul 6986   # cap 7681    / cdiv 7760   NNcn 8039   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-z 8352
This theorem is referenced by:  addmodlteq  9400
  Copyright terms: Public domain W3C validator