ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrex Unicode version

Theorem tfrex 5977
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrex.1  |-  F  = recs ( G )
tfrex.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfrex  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  e.  _V )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    A( x)    F( x)    V( x)

Proof of Theorem tfrex
Dummy variables  f  g  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrex.1 . . 3  |-  F  = recs ( G )
21fveq1i 5199 . 2  |-  ( F `
 A )  =  (recs ( G ) `
 A )
3 eqid 2081 . . . 4  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
43tfrlem3 5949 . . 3  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
5 tfrex.2 . . 3  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
64, 5tfrexlem 5971 . 2  |-  ( (
ph  /\  A  e.  V )  ->  (recs ( G ) `  A
)  e.  _V )
72, 6syl5eqel 2165 1  |-  ( (
ph  /\  A  e.  V )  ->  ( F `  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349   _Vcvv 2601   Oncon0 4118    |` cres 4365   Fun wfun 4916    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by:  rdgexggg  5987
  Copyright terms: Public domain W3C validator