ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsplit Unicode version

Theorem uzsplit 9109
Description: Express an upper integer set as the disjoint (see uzdisj 9110) union of the first  N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )

Proof of Theorem uzsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzelz 8628 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 eluzelz 8628 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
3 zlelttric 8396 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  <_  k  \/  k  <  N ) )
41, 2, 3syl2an 283 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( N  <_  k  \/  k  < 
N ) )
5 eluz 8632 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  N )  <->  N  <_  k ) )
61, 2, 5syl2an 283 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  <->  N  <_  k ) )
7 eluzel2 8624 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
8 elfzm11 9108 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <  N ) ) )
9 df-3an 921 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <  N )  <->  ( (
k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) )
108, 9syl6bb 194 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( ( k  e.  ZZ  /\  M  <_ 
k )  /\  k  <  N ) ) )
117, 1, 10syl2anr 284 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
12 eluzle 8631 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
132, 12jca 300 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1413adantl 271 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1514biantrurd 299 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  <  N  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
1611, 15bitr4d 189 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  k  <  N
) )
176, 16orbi12d 739 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  -  1 ) ) )  <->  ( N  <_  k  \/  k  < 
N ) ) )
184, 17mpbird 165 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  - 
1 ) ) ) )
1918orcomd 680 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2019ex 113 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  (
ZZ>= `  N ) ) ) )
21 elfzuz 9041 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
2221a1i 9 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  ->  k  e.  ( ZZ>= `  M )
) )
23 uztrn 8635 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
2423expcom 114 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
2522, 24jaod 669 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  ( ZZ>= `  M ) ) )
2620, 25impbid 127 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) ) ) )
27 elun 3113 . . 3  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
)  <->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2826, 27syl6bbr 196 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
) ) )
2928eqrdv 2079 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433    u. cun 2971   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1c1 6982    < clt 7153    <_ cle 7154    - cmin 7279   ZZcz 8351   ZZ>=cuz 8619   ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  nn0split  9147
  Copyright terms: Public domain W3C validator