![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzel2 | Unicode version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 8622 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | frel 5069 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
. . 3
![]() ![]() ![]() |
4 | relelfvdm 5226 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpan 414 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1 | fdmi 5071 |
. 2
![]() ![]() ![]() ![]() ![]() |
7 | 5, 6 | syl6eleq 2171 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-cnex 7067 ax-resscn 7068 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-neg 7282 df-z 8352 df-uz 8620 |
This theorem is referenced by: eluz2 8625 uztrn 8635 uzneg 8637 uzss 8639 uz11 8641 eluzadd 8647 uzm1 8649 uzin 8651 uzind4 8676 elfz5 9037 elfzel1 9044 eluzfz1 9050 fzsplit2 9069 fzopth 9079 fzpred 9087 fzpreddisj 9088 fzdifsuc 9098 uzsplit 9109 uzdisj 9110 elfzp12 9116 fzm1 9117 uznfz 9120 nn0disj 9148 fzolb 9162 fzoss2 9181 fzouzdisj 9189 ige2m2fzo 9207 elfzonelfzo 9239 frec2uzrand 9407 frecfzen2 9420 iseqcl 9443 iseqp1 9445 iseqfeq2 9449 iseqfveq 9450 iseqshft2 9452 iseqsplit 9458 iseqcaopr3 9460 iseqid3s 9466 iseqid 9467 iseqhomo 9468 iseqz 9469 serige0 9473 serile 9474 leexp2a 9529 rexanuz2 9877 cau4 10002 clim2iser 10175 clim2iser2 10176 climserile 10183 |
Copyright terms: Public domain | W3C validator |