ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom3m Unicode version

Theorem xpdom3m 6331
Description: A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
Assertion
Ref Expression
xpdom3m  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B    x, V    x, W

Proof of Theorem xpdom3m
StepHypRef Expression
1 xpsneng 6319 . . . . . . 7  |-  ( ( A  e.  V  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
213adant2 957 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~~  A )
32ensymd 6286 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~~  ( A  X.  { x }
) )
4 xpexg 4470 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
543adant3 958 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  B
)  e.  _V )
6 simp3 940 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  x  e.  B )
76snssd 3530 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  { x }  C_  B )
8 xpss2 4467 . . . . . . 7  |-  ( { x }  C_  B  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
97, 8syl 14 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  C_  ( A  X.  B
) )
10 ssdomg 6281 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  {
x } )  C_  ( A  X.  B
)  ->  ( A  X.  { x } )  ~<_  ( A  X.  B
) ) )
115, 9, 10sylc 61 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  ( A  X.  {
x } )  ~<_  ( A  X.  B ) )
12 endomtr 6293 . . . . 5  |-  ( ( A  ~~  ( A  X.  { x }
)  /\  ( A  X.  { x } )  ~<_  ( A  X.  B
) )  ->  A  ~<_  ( A  X.  B
) )
133, 11, 12syl2anc 403 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  x  e.  B )  ->  A  ~<_  ( A  X.  B ) )
14133expia 1140 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  B  ->  A  ~<_  ( A  X.  B ) ) )
1514exlimdv 1740 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  e.  B  ->  A  ~<_  ( A  X.  B
) ) )
16153impia 1135 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  E. x  x  e.  B
)  ->  A  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 919   E.wex 1421    e. wcel 1433   _Vcvv 2601    C_ wss 2973   {csn 3398   class class class wbr 3785    X. cxp 4361    ~~ cen 6242    ~<_ cdom 6243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-er 6129  df-en 6245  df-dom 6246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator