| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdomg | Unicode version | ||
| Description: A set dominates its subsets. Theorem 16 of [Suppes] p. 94. (Contributed by NM, 19-Jun-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| ssdomg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 3917 |
. . 3
| |
| 2 | simpr 108 |
. . 3
| |
| 3 | f1oi 5184 |
. . . . . . . . . 10
| |
| 4 | dff1o3 5152 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | mpbi 143 |
. . . . . . . . 9
|
| 6 | 5 | simpli 109 |
. . . . . . . 8
|
| 7 | fof 5126 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 7 |
. . . . . . 7
|
| 9 | fss 5074 |
. . . . . . 7
| |
| 10 | 8, 9 | mpan 414 |
. . . . . 6
|
| 11 | funi 4952 |
. . . . . . . 8
| |
| 12 | cnvi 4748 |
. . . . . . . . 9
| |
| 13 | 12 | funeqi 4942 |
. . . . . . . 8
|
| 14 | 11, 13 | mpbir 144 |
. . . . . . 7
|
| 15 | funres11 4991 |
. . . . . . 7
| |
| 16 | 14, 15 | ax-mp 7 |
. . . . . 6
|
| 17 | 10, 16 | jctir 306 |
. . . . 5
|
| 18 | df-f1 4927 |
. . . . 5
| |
| 19 | 17, 18 | sylibr 132 |
. . . 4
|
| 20 | 19 | adantr 270 |
. . 3
|
| 21 | f1dom2g 6259 |
. . 3
| |
| 22 | 1, 2, 20, 21 | syl3anc 1169 |
. 2
|
| 23 | 22 | expcom 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-dom 6246 |
| This theorem is referenced by: xpdom3m 6331 phplem4dom 6348 nndomo 6350 phpm 6351 domfiexmid 6363 |
| Copyright terms: Public domain | W3C validator |