ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiindim Unicode version

Theorem xpiindim 4491
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpiindim  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
Distinct variable groups:    x, y, A   
x, C, y
Allowed substitution hints:    B( x, y)

Proof of Theorem xpiindim
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4465 . . . . . 6  |-  Rel  ( C  X.  B )
21rgenw 2418 . . . . 5  |-  A. x  e.  A  Rel  ( C  X.  B )
3 eleq1 2141 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43cbvexv 1836 . . . . . 6  |-  ( E. x  x  e.  A  <->  E. y  y  e.  A
)
5 r19.2m 3329 . . . . . 6  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  Rel  ( C  X.  B ) )  ->  E. x  e.  A  Rel  ( C  X.  B
) )
64, 5sylanbr 279 . . . . 5  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  Rel  ( C  X.  B ) )  ->  E. x  e.  A  Rel  ( C  X.  B
) )
72, 6mpan2 415 . . . 4  |-  ( E. y  y  e.  A  ->  E. x  e.  A  Rel  ( C  X.  B
) )
8 reliin 4477 . . . 4  |-  ( E. x  e.  A  Rel  ( C  X.  B
)  ->  Rel  |^|_ x  e.  A  ( C  X.  B ) )
97, 8syl 14 . . 3  |-  ( E. y  y  e.  A  ->  Rel  |^|_ x  e.  A  ( C  X.  B
) )
10 relxp 4465 . . 3  |-  Rel  ( C  X.  |^|_ x  e.  A  B )
119, 10jctil 305 . 2  |-  ( E. y  y  e.  A  ->  ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_
x  e.  A  ( C  X.  B ) ) )
12 r19.28mv 3334 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( w  e.  C  /\  z  e.  B )  <->  ( w  e.  C  /\  A. x  e.  A  z  e.  B ) ) )
134, 12sylbir 133 . . . . . 6  |-  ( E. y  y  e.  A  ->  ( A. x  e.  A  ( w  e.  C  /\  z  e.  B )  <->  ( w  e.  C  /\  A. x  e.  A  z  e.  B ) ) )
1413bicomd 139 . . . . 5  |-  ( E. y  y  e.  A  ->  ( ( w  e.  C  /\  A. x  e.  A  z  e.  B )  <->  A. x  e.  A  ( w  e.  C  /\  z  e.  B ) ) )
15 vex 2604 . . . . . . 7  |-  z  e. 
_V
16 eliin 3683 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  z  e.  B ) )
1715, 16ax-mp 7 . . . . . 6  |-  ( z  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  z  e.  B )
1817anbi2i 444 . . . . 5  |-  ( ( w  e.  C  /\  z  e.  |^|_ x  e.  A  B )  <->  ( w  e.  C  /\  A. x  e.  A  z  e.  B ) )
19 opelxp 4392 . . . . . 6  |-  ( <.
w ,  z >.  e.  ( C  X.  B
)  <->  ( w  e.  C  /\  z  e.  B ) )
2019ralbii 2372 . . . . 5  |-  ( A. x  e.  A  <. w ,  z >.  e.  ( C  X.  B )  <->  A. x  e.  A  ( w  e.  C  /\  z  e.  B
) )
2114, 18, 203bitr4g 221 . . . 4  |-  ( E. y  y  e.  A  ->  ( ( w  e.  C  /\  z  e. 
|^|_ x  e.  A  B )  <->  A. x  e.  A  <. w ,  z >.  e.  ( C  X.  B ) ) )
22 opelxp 4392 . . . 4  |-  ( <.
w ,  z >.  e.  ( C  X.  |^|_ x  e.  A  B )  <-> 
( w  e.  C  /\  z  e.  |^|_ x  e.  A  B )
)
23 vex 2604 . . . . . 6  |-  w  e. 
_V
2423, 15opex 3984 . . . . 5  |-  <. w ,  z >.  e.  _V
25 eliin 3683 . . . . 5  |-  ( <.
w ,  z >.  e.  _V  ->  ( <. w ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B )  <->  A. x  e.  A  <. w ,  z >.  e.  ( C  X.  B ) ) )
2624, 25ax-mp 7 . . . 4  |-  ( <.
w ,  z >.  e.  |^|_ x  e.  A  ( C  X.  B
)  <->  A. x  e.  A  <. w ,  z >.  e.  ( C  X.  B
) )
2721, 22, 263bitr4g 221 . . 3  |-  ( E. y  y  e.  A  ->  ( <. w ,  z
>.  e.  ( C  X.  |^|_
x  e.  A  B
)  <->  <. w ,  z
>.  e.  |^|_ x  e.  A  ( C  X.  B
) ) )
2827eqrelrdv2 4457 . 2  |-  ( ( ( Rel  ( C  X.  |^|_ x  e.  A  B )  /\  Rel  |^|_
x  e.  A  ( C  X.  B ) )  /\  E. y 
y  e.  A )  ->  ( C  X.  |^|_
x  e.  A  B
)  =  |^|_ x  e.  A  ( C  X.  B ) )
2911, 28mpancom 413 1  |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   A.wral 2348   E.wrex 2349   _Vcvv 2601   <.cop 3401   |^|_ciin 3679    X. cxp 4361   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iin 3681  df-opab 3840  df-xp 4369  df-rel 4370
This theorem is referenced by:  xpriindim  4492
  Copyright terms: Public domain W3C validator