ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpimasn Unicode version

Theorem xpimasn 4789
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpimasn  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )

Proof of Theorem xpimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snmg 3508 . . 3  |-  ( X  e.  A  ->  E. x  x  e.  { X } )
2 snssi 3529 . . . . . 6  |-  ( X  e.  A  ->  { X }  C_  A )
3 dfss1 3170 . . . . . 6  |-  ( { X }  C_  A  <->  ( A  i^i  { X } )  =  { X } )
42, 3sylib 120 . . . . 5  |-  ( X  e.  A  ->  ( A  i^i  { X }
)  =  { X } )
54eleq2d 2148 . . . 4  |-  ( X  e.  A  ->  (
x  e.  ( A  i^i  { X }
)  <->  x  e.  { X } ) )
65exbidv 1746 . . 3  |-  ( X  e.  A  ->  ( E. x  x  e.  ( A  i^i  { X } )  <->  E. x  x  e.  { X } ) )
71, 6mpbird 165 . 2  |-  ( X  e.  A  ->  E. x  x  e.  ( A  i^i  { X } ) )
8 xpima2m 4788 . 2  |-  ( E. x  x  e.  ( A  i^i  { X } )  ->  (
( A  X.  B
) " { X } )  =  B )
97, 8syl 14 1  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   E.wex 1421    e. wcel 1433    i^i cin 2972    C_ wss 2973   {csn 3398    X. cxp 4361   "cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator