ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllempos Unicode version

Theorem zaddcllempos 8388
Description: Lemma for zaddcl 8391. Special case in which  N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllempos  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )

Proof of Theorem zaddcllempos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . 5  |-  ( x  =  1  ->  ( M  +  x )  =  ( M  + 
1 ) )
21eleq1d 2147 . . . 4  |-  ( x  =  1  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  1 )  e.  ZZ ) )
32imbi2d 228 . . 3  |-  ( x  =  1  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ ) ) )
4 oveq2 5540 . . . . 5  |-  ( x  =  y  ->  ( M  +  x )  =  ( M  +  y ) )
54eleq1d 2147 . . . 4  |-  ( x  =  y  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  y )  e.  ZZ ) )
65imbi2d 228 . . 3  |-  ( x  =  y  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ ) ) )
7 oveq2 5540 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( M  +  x )  =  ( M  +  ( y  +  1 ) ) )
87eleq1d 2147 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
98imbi2d 228 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
10 oveq2 5540 . . . . 5  |-  ( x  =  N  ->  ( M  +  x )  =  ( M  +  N ) )
1110eleq1d 2147 . . . 4  |-  ( x  =  N  ->  (
( M  +  x
)  e.  ZZ  <->  ( M  +  N )  e.  ZZ ) )
1211imbi2d 228 . . 3  |-  ( x  =  N  ->  (
( M  e.  ZZ  ->  ( M  +  x
)  e.  ZZ )  <-> 
( M  e.  ZZ  ->  ( M  +  N
)  e.  ZZ ) ) )
13 peano2z 8387 . . 3  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
14 peano2z 8387 . . . . . 6  |-  ( ( M  +  y )  e.  ZZ  ->  (
( M  +  y )  +  1 )  e.  ZZ )
15 zcn 8356 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
1615adantl 271 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  M  e.  CC )
17 nncn 8047 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
1817adantr 270 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  y  e.  CC )
19 1cnd 7135 . . . . . . . 8  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  1  e.  CC )
2016, 18, 19addassd 7141 . . . . . . 7  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  +  1 )  =  ( M  +  ( y  +  1 ) ) )
2120eleq1d 2147 . . . . . 6  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( ( M  +  y )  +  1 )  e.  ZZ  <->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2214, 21syl5ib 152 . . . . 5  |-  ( ( y  e.  NN  /\  M  e.  ZZ )  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) )
2322ex 113 . . . 4  |-  ( y  e.  NN  ->  ( M  e.  ZZ  ->  ( ( M  +  y )  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
2423a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  ->  ( M  +  y )  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  +  ( y  +  1 ) )  e.  ZZ ) ) )
253, 6, 9, 12, 13, 24nnind 8055 . 2  |-  ( N  e.  NN  ->  ( M  e.  ZZ  ->  ( M  +  N )  e.  ZZ ) )
2625impcom 123 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433  (class class class)co 5532   CCcc 6979   1c1 6982    + caddc 6984   NNcn 8039   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352
This theorem is referenced by:  zaddcl  8391
  Copyright terms: Public domain W3C validator