ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcl Unicode version

Theorem zsupcl 10343
Description: Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at  M (which corresponds to the non-empty condition of classical supremum theorems), (b) decidable at each value after  M, and (c) be false after  j (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcl.m  |-  ( ph  ->  M  e.  ZZ )
zsupcl.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcl.mtru  |-  ( ph  ->  ch )
zsupcl.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcl.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcl  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Distinct variable groups:    ph, j, n    ps, j    ch, j, n   
j, M, n
Allowed substitution hint:    ps( n)

Proof of Theorem zsupcl
Dummy variables  x  y  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcl.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
21zred 8469 . . 3  |-  ( ph  ->  M  e.  RR )
3 lttri3 7191 . . . . 5  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
43adantl 271 . . . 4  |-  ( (
ph  /\  ( u  e.  RR  /\  v  e.  RR ) )  -> 
( u  =  v  <-> 
( -.  u  < 
v  /\  -.  v  <  u ) ) )
5 zssre 8358 . . . . 5  |-  ZZ  C_  RR
6 zsupcl.sbm . . . . . 6  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
7 zsupcl.mtru . . . . . 6  |-  ( ph  ->  ch )
8 zsupcl.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
9 zsupcl.bnd . . . . . 6  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
101, 6, 7, 8, 9zsupcllemex 10342 . . . . 5  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
11 ssrexv 3059 . . . . 5  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
y  <  z )
)  ->  E. x  e.  RR  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
125, 10, 11mpsyl 64 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
134, 12supclti 6411 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  RR )
146elrab 2749 . . . . 5  |-  ( M  e.  { n  e.  ZZ  |  ps }  <->  ( M  e.  ZZ  /\  ch ) )
151, 7, 14sylanbrc 408 . . . 4  |-  ( ph  ->  M  e.  { n  e.  ZZ  |  ps }
)
164, 12supubti 6412 . . . 4  |-  ( ph  ->  ( M  e.  {
n  e.  ZZ  |  ps }  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M
) )
1715, 16mpd 13 . . 3  |-  ( ph  ->  -.  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  <  M )
182, 13, 17nltled 7230 . 2  |-  ( ph  ->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  ) )
195a1i 9 . . . 4  |-  ( ph  ->  ZZ  C_  RR )
204, 10, 19supelti 6415 . . 3  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )
21 eluz 8632 . . 3  |-  ( ( M  e.  ZZ  /\  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ZZ )  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
221, 20, 21syl2anc 403 . 2  |-  ( ph  ->  ( sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )  <->  M  <_  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )
) )
2318, 22mpbird 165 1  |-  ( ph  ->  sup ( { n  e.  ZZ  |  ps } ,  RR ,  <  )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 775    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352    C_ wss 2973   class class class wbr 3785   ` cfv 4922   supcsup 6395   RRcr 6980    < clt 7153    <_ cle 7154   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  gcdsupcl  10350
  Copyright terms: Public domain W3C validator