ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemex Unicode version

Theorem zsupcllemex 10342
Description: Lemma for zsupcl 10343. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypotheses
Ref Expression
zsupcllemex.m  |-  ( ph  ->  M  e.  ZZ )
zsupcllemex.sbm  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
zsupcllemex.mtru  |-  ( ph  ->  ch )
zsupcllemex.dc  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
zsupcllemex.bnd  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
Assertion
Ref Expression
zsupcllemex  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Distinct variable groups:    n, M, y    ch, n    j, n, ph, y    ps, j, x, z, y    x, n, z
Allowed substitution hints:    ph( x, z)    ps( n)    ch( x, y, z, j)    M( x, z, j)

Proof of Theorem zsupcllemex
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsupcllemex.bnd . 2  |-  ( ph  ->  E. j  e.  (
ZZ>= `  M ) A. n  e.  ( ZZ>= `  j )  -.  ps )
2 simpl 107 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  ph )
3 simprr 498 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  A. n  e.  ( ZZ>=
`  j )  -. 
ps )
4 fveq2 5198 . . . . . . . 8  |-  ( w  =  M  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  M )
)
54raleqdv 2555 . . . . . . 7  |-  ( w  =  M  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) )
65anbi2d 451 . . . . . 6  |-  ( w  =  M  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  M )  -. 
ps ) ) )
76imbi1d 229 . . . . 5  |-  ( w  =  M  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
8 fveq2 5198 . . . . . . . 8  |-  ( w  =  k  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  k )
)
98raleqdv 2555 . . . . . . 7  |-  ( w  =  k  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) )
109anbi2d 451 . . . . . 6  |-  ( w  =  k  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  k )  -. 
ps ) ) )
1110imbi1d 229 . . . . 5  |-  ( w  =  k  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
12 fveq2 5198 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  ( k  +  1 ) ) )
1312raleqdv 2555 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) )
1413anbi2d 451 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps ) ) )
1514imbi1d 229 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  ( k  +  1 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
16 fveq2 5198 . . . . . . . 8  |-  ( w  =  j  ->  ( ZZ>=
`  w )  =  ( ZZ>= `  j )
)
1716raleqdv 2555 . . . . . . 7  |-  ( w  =  j  ->  ( A. n  e.  ( ZZ>=
`  w )  -. 
ps 
<-> 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) )
1817anbi2d 451 . . . . . 6  |-  ( w  =  j  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  <->  ( ph  /\ 
A. n  e.  (
ZZ>= `  j )  -. 
ps ) ) )
1918imbi1d 229 . . . . 5  |-  ( w  =  j  ->  (
( ( ph  /\  A. n  e.  ( ZZ>= `  w )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  <-> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
20 zsupcllemex.mtru . . . . . . . 8  |-  ( ph  ->  ch )
2120adantr 270 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  ch )
22 zsupcllemex.m . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
23 uzid 8633 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
24 zsupcllemex.sbm . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ps 
<->  ch ) )
2524notbid 624 . . . . . . . . . 10  |-  ( n  =  M  ->  ( -.  ps  <->  -.  ch )
)
2625rspcv 2697 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch ) )
2722, 23, 263syl 17 . . . . . . . 8  |-  ( ph  ->  ( A. n  e.  ( ZZ>= `  M )  -.  ps  ->  -.  ch )
)
2827imp 122 . . . . . . 7  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  -.  ch )
2921, 28pm2.21dd 582 . . . . . 6  |-  ( (
ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
3029a1i 9 . . . . 5  |-  ( M  e.  ZZ  ->  (
( ph  /\  A. n  e.  ( ZZ>= `  M )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
31 zsupcllemex.dc . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  -> DECID  ps )
3231zsupcllemstep 10341 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  A. n  e.  ( ZZ>= `  k )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )  ->  ( ( ph  /\ 
A. n  e.  (
ZZ>= `  ( k  +  1 ) )  -. 
ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) ) )
337, 11, 15, 19, 30, 32uzind4 8676 . . . 4  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
3433ad2antrl 473 . . 3  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  -> 
( ( ph  /\  A. n  e.  ( ZZ>= `  j )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) ) )
352, 3, 34mp2and 423 . 2  |-  ( (
ph  /\  ( j  e.  ( ZZ>= `  M )  /\  A. n  e.  (
ZZ>= `  j )  -. 
ps ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
361, 35rexlimddv 2481 1  |-  ( ph  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  |  ps }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 775    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   RRcr 6980   1c1 6982    + caddc 6984    < clt 7153   ZZcz 8351   ZZ>=cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  zsupcl  10343  infssuzex  10345  gcdsupex  10349
  Copyright terms: Public domain W3C validator