| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supubti | Unicode version | ||
| Description: A supremum is an upper
bound. See also supclti 6411 and suplubti 6413.
This proof demonstrates how to expand an iota-based definition (df-iota 4887) using riotacl2 5501. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| supclti.2 |
|
| Ref | Expression |
|---|---|
| supubti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | 2 | ss2rabi 3076 |
. . 3
|
| 4 | supmoti.ti |
. . . . 5
| |
| 5 | supclti.2 |
. . . . 5
| |
| 6 | 4, 5 | supval2ti 6408 |
. . . 4
|
| 7 | 4, 5 | supeuti 6407 |
. . . . 5
|
| 8 | riotacl2 5501 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 6, 9 | eqeltrd 2155 |
. . 3
|
| 11 | 3, 10 | sseldi 2997 |
. 2
|
| 12 | breq2 3789 |
. . . . . . 7
| |
| 13 | 12 | notbid 624 |
. . . . . 6
|
| 14 | 13 | cbvralv 2577 |
. . . . 5
|
| 15 | breq1 3788 |
. . . . . . 7
| |
| 16 | 15 | notbid 624 |
. . . . . 6
|
| 17 | 16 | ralbidv 2368 |
. . . . 5
|
| 18 | 14, 17 | syl5bb 190 |
. . . 4
|
| 19 | 18 | elrab 2749 |
. . 3
|
| 20 | 19 | simprbi 269 |
. 2
|
| 21 | breq2 3789 |
. . . 4
| |
| 22 | 21 | notbid 624 |
. . 3
|
| 23 | 22 | rspccv 2698 |
. 2
|
| 24 | 11, 20, 23 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-riota 5488 df-sup 6397 |
| This theorem is referenced by: suplub2ti 6414 supisoti 6423 inflbti 6437 suprubex 8029 zsupcl 10343 dvdslegcd 10356 |
| Copyright terms: Public domain | W3C validator |