ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemv GIF version

Theorem acexmidlemv 5530
Description: Lemma for acexmid 5531.

This is acexmid 5531 with additional distinct variable constraints, most notably between 𝜑 and 𝑥.

(Contributed by Jim Kingdon, 6-Aug-2019.)

Hypothesis
Ref Expression
acexmidlemv.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmidlemv (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑣,𝑢

Proof of Theorem acexmidlemv
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsucelsucexmidlem 4272 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On
2 pp0ex 3960 . . . . 5 {∅, {∅}} ∈ V
32rabex 3922 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V
4 prexg 3966 . . . 4 (({𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} ∈ On ∧ {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} ∈ V) → {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V)
51, 3, 4mp2an 416 . . 3 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} ∈ V
6 raleq 2549 . . . 4 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
76exbidv 1746 . . 3 (𝑥 = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} → (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
8 acexmidlemv.choice . . 3 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
95, 7, 8vtocl 2653 . 2 𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
10 eqeq1 2087 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = ∅ ↔ 𝑡 = ∅))
1110orbi1d 737 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = ∅ ∨ 𝜑) ↔ (𝑡 = ∅ ∨ 𝜑)))
1211cbvrabv 2600 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = ∅ ∨ 𝜑)}
13 eqeq1 2087 . . . . . 6 (𝑠 = 𝑡 → (𝑠 = {∅} ↔ 𝑡 = {∅}))
1413orbi1d 737 . . . . 5 (𝑠 = 𝑡 → ((𝑠 = {∅} ∨ 𝜑) ↔ (𝑡 = {∅} ∨ 𝜑)))
1514cbvrabv 2600 . . . 4 {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)} = {𝑡 ∈ {∅, {∅}} ∣ (𝑡 = {∅} ∨ 𝜑)}
16 eqid 2081 . . . 4 {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}} = {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}
1712, 15, 16acexmidlem2 5529 . . 3 (∀𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
1817exlimiv 1529 . 2 (∃𝑦𝑧 ∈ {{𝑠 ∈ {∅, {∅}} ∣ (𝑠 = ∅ ∨ 𝜑)}, {𝑠 ∈ {∅, {∅}} ∣ (𝑠 = {∅} ∨ 𝜑)}}∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
199, 18ax-mp 7 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wo 661   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  ∃!wreu 2350  {crab 2352  Vcvv 2601  c0 3251  {csn 3398  {cpr 3399  Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126  df-iota 4887  df-riota 5488
This theorem is referenced by:  acexmid  5531
  Copyright terms: Public domain W3C validator