Step | Hyp | Ref
| Expression |
1 | | simpll 495 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦 ∈ 𝑧) |
2 | | noel 3255 |
. . . . . . . . . 10
⊢ ¬
𝑦 ∈
∅ |
3 | | eleq2 2142 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) |
4 | 2, 3 | mtbiri 632 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
5 | 4 | adantl 271 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → ¬ 𝑦 ∈ 𝑧) |
6 | 1, 5 | pm2.21dd 582 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
7 | 6 | ex 113 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})) |
8 | | eleq2 2142 |
. . . . . . . . . . 11
⊢ (𝑧 = {∅} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {∅})) |
9 | 8 | biimpac 292 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 ∈ {∅}) |
10 | | velsn 3415 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
11 | 9, 10 | sylib 120 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 = ∅) |
12 | | onsucelsucexmidlem1 4271 |
. . . . . . . . 9
⊢ ∅
∈ {𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)} |
13 | 11, 12 | syl6eqel 2169 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
14 | 13 | ex 113 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑧 → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})) |
15 | 14 | adantr 270 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})) |
16 | | elrabi 2746 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → 𝑧 ∈ {∅,
{∅}}) |
17 | | vex 2604 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
18 | 17 | elpr 3419 |
. . . . . . . 8
⊢ (𝑧 ∈ {∅, {∅}}
↔ (𝑧 = ∅ ∨
𝑧 =
{∅})) |
19 | 16, 18 | sylib 120 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
20 | 19 | adantl 271 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
21 | 7, 15, 20 | mpjaod 670 |
. . . . 5
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
22 | 21 | gen2 1379 |
. . . 4
⊢
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
23 | | dftr2 3877 |
. . . 4
⊢ (Tr
{𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)} ↔
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})) |
24 | 22, 23 | mpbir 144 |
. . 3
⊢ Tr {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} |
25 | | ssrab2 3079 |
. . 3
⊢ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} ⊆ {∅,
{∅}} |
26 | | 2ordpr 4267 |
. . 3
⊢ Ord
{∅, {∅}} |
27 | | trssord 4135 |
. . 3
⊢ ((Tr
{𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)} ∧ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} ⊆ {∅,
{∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) |
28 | 24, 25, 26, 27 | mp3an 1268 |
. 2
⊢ Ord
{𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)} |
29 | | pp0ex 3960 |
. . . 4
⊢ {∅,
{∅}} ∈ V |
30 | 29 | rabex 3922 |
. . 3
⊢ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} ∈ V |
31 | 30 | elon 4129 |
. 2
⊢ ({𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} ∈ On ↔ Ord
{𝑥 ∈ {∅,
{∅}} ∣ (𝑥 =
∅ ∨ 𝜑)}) |
32 | 28, 31 | mpbir 144 |
1
⊢ {𝑥 ∈ {∅, {∅}}
∣ (𝑥 = ∅ ∨
𝜑)} ∈
On |