![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlsub | GIF version |
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addlsub.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addlsub.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addlsub | ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5539 | . . 3 ⊢ ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵)) | |
2 | addlsub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addlsub.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 2, 3 | pncand 7420 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
5 | eqtr2 2099 | . . . . . 6 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶 − 𝐵) = 𝐴) | |
6 | 5 | eqcomd 2086 | . . . . 5 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵)) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵))) |
8 | 4, 7 | mpan2d 418 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) → 𝐴 = (𝐶 − 𝐵))) |
9 | 1, 8 | syl5 32 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 → 𝐴 = (𝐶 − 𝐵))) |
10 | oveq1 5539 | . . 3 ⊢ (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵)) | |
11 | addlsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
12 | 11, 3 | npcand 7423 | . . . 4 ⊢ (𝜑 → ((𝐶 − 𝐵) + 𝐵) = 𝐶) |
13 | eqtr 2098 | . . . . 5 ⊢ (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)) |
15 | 12, 14 | mpan2d 418 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
16 | 10, 15 | syl5 32 | . 2 ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
17 | 9, 16 | impbid 127 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 (class class class)co 5532 ℂcc 6979 + caddc 6984 − cmin 7279 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-setind 4280 ax-resscn 7068 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-sub 7281 |
This theorem is referenced by: addrsub 7475 subexsub 7476 nn0ob 10308 |
Copyright terms: Public domain | W3C validator |