| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpac | GIF version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimpac | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpcd 157 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | imp 122 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: gencbvex2 2646 ordtri2or2exmidlem 4269 onsucelsucexmidlem 4272 ordsuc 4306 onsucuni2 4307 poltletr 4745 tz6.12-1 5221 nfunsn 5228 nnaordex 6123 th3qlem1 6231 ssfilem 6360 diffitest 6371 nqnq0pi 6628 distrlem1prl 6772 distrlem1pru 6773 eqle 7202 flodddiv4 10334 |
| Copyright terms: Public domain | W3C validator |