ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfilem GIF version

Theorem ssfilem 6360
Description: Lemma for ssfiexmid 6361. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
ssfilem.1 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
Assertion
Ref Expression
ssfilem (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑧

Proof of Theorem ssfilem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfilem.1 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2 isfi 6264 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛)
31, 2mpbi 143 . 2 𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛
4 0elnn 4358 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
5 breq2 3789 . . . . . . . . . 10 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅))
6 en0 6298 . . . . . . . . . 10 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
75, 6syl6bb 194 . . . . . . . . 9 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
87biimpac 292 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
9 rabeq0 3274 . . . . . . . . 9 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
10 0ex 3905 . . . . . . . . . . 11 ∅ ∈ V
1110snm 3510 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
12 r19.3rmv 3332 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑))
1311, 12ax-mp 7 . . . . . . . . 9 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
149, 13bitr4i 185 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑)
158, 14sylib 120 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → ¬ 𝜑)
1615olcd 685 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑))
17 ensym 6284 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑})
18 elex2 2615 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑥 𝑥𝑛)
19 enm 6317 . . . . . . . 8 ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2017, 18, 19syl2an 283 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
21 biidd 170 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝜑𝜑))
2221elrab 2749 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑))
2322simprbi 269 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2423orcd 684 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2524exlimiv 1529 . . . . . . 7 (∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2620, 25syl 14 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
2716, 26jaodan 743 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑))
284, 27sylan2 280 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑))
2928ancoms 264 . . 3 ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
3029rexlimiva 2472 . 2 (∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑))
313, 30ax-mp 7 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wo 661   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  {crab 2352  c0 3251  {csn 3398   class class class wbr 3785  ωcom 4331  cen 6242  Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by:  ssfiexmid  6361  domfiexmid  6363
  Copyright terms: Public domain W3C validator