ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucuni2 GIF version

Theorem onsucuni2 4307
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2141 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 292 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 sucelon 4247 . . . . . . 7 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
4 eloni 4130 . . . . . . . . . 10 (𝐵 ∈ On → Ord 𝐵)
5 ordtr 4133 . . . . . . . . . 10 (Ord 𝐵 → Tr 𝐵)
64, 5syl 14 . . . . . . . . 9 (𝐵 ∈ On → Tr 𝐵)
7 unisucg 4169 . . . . . . . . 9 (𝐵 ∈ On → (Tr 𝐵 suc 𝐵 = 𝐵))
86, 7mpbid 145 . . . . . . . 8 (𝐵 ∈ On → suc 𝐵 = 𝐵)
9 suceq 4157 . . . . . . . 8 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
108, 9syl 14 . . . . . . 7 (𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
113, 10sylbir 133 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
12 eloni 4130 . . . . . . . 8 (suc 𝐵 ∈ On → Ord suc 𝐵)
13 ordtr 4133 . . . . . . . 8 (Ord suc 𝐵 → Tr suc 𝐵)
1412, 13syl 14 . . . . . . 7 (suc 𝐵 ∈ On → Tr suc 𝐵)
15 unisucg 4169 . . . . . . 7 (suc 𝐵 ∈ On → (Tr suc 𝐵 suc suc 𝐵 = suc 𝐵))
1614, 15mpbid 145 . . . . . 6 (suc 𝐵 ∈ On → suc suc 𝐵 = suc 𝐵)
1711, 16eqtr4d 2116 . . . . 5 (suc 𝐵 ∈ On → suc suc 𝐵 = suc suc 𝐵)
182, 17syl 14 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
19 unieq 3610 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
20 suceq 4157 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2119, 20syl 14 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
22 suceq 4157 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
2322unieqd 3612 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
2421, 23eqeq12d 2095 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
2518, 24syl5ibr 154 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
2625anabsi7 545 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
27 eloni 4130 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
28 ordtr 4133 . . . . 5 (Ord 𝐴 → Tr 𝐴)
2927, 28syl 14 . . . 4 (𝐴 ∈ On → Tr 𝐴)
30 unisucg 4169 . . . 4 (𝐴 ∈ On → (Tr 𝐴 suc 𝐴 = 𝐴))
3129, 30mpbid 145 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
3231adantr 270 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
3326, 32eqtrd 2113 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433   cuni 3601  Tr wtr 3875  Ord word 4117  Oncon0 4118  suc csuc 4120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator