ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest GIF version

Theorem diffitest 6371
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
Assertion
Ref Expression
diffitest 𝜑 ∨ ¬ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏   𝜑,𝑏
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem diffitest
Dummy variables 𝑥 𝑛 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3905 . . . . . 6 ∅ ∈ V
2 snfig 6314 . . . . . 6 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 7 . . . . 5 {∅} ∈ Fin
4 diffitest.1 . . . . 5 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
5 difeq1 3083 . . . . . . . 8 (𝑎 = {∅} → (𝑎𝑏) = ({∅} ∖ 𝑏))
65eleq1d 2147 . . . . . . 7 (𝑎 = {∅} → ((𝑎𝑏) ∈ Fin ↔ ({∅} ∖ 𝑏) ∈ Fin))
76albidv 1745 . . . . . 6 (𝑎 = {∅} → (∀𝑏(𝑎𝑏) ∈ Fin ↔ ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
87rspcv 2697 . . . . 5 ({∅} ∈ Fin → (∀𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin → ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
93, 4, 8mp2 16 . . . 4 𝑏({∅} ∖ 𝑏) ∈ Fin
10 rabexg 3921 . . . . . 6 ({∅} ∈ Fin → {𝑥 ∈ {∅} ∣ 𝜑} ∈ V)
113, 10ax-mp 7 . . . . 5 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
12 difeq2 3084 . . . . . 6 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → ({∅} ∖ 𝑏) = ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
1312eleq1d 2147 . . . . 5 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → (({∅} ∖ 𝑏) ∈ Fin ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin))
1411, 13spcv 2691 . . . 4 (∀𝑏({∅} ∖ 𝑏) ∈ Fin → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin)
159, 14ax-mp 7 . . 3 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin
16 isfi 6264 . . 3 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin ↔ ∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛)
1715, 16mpbi 143 . 2 𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛
18 0elnn 4358 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
19 breq2 3789 . . . . . . . . . 10 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅))
20 en0 6298 . . . . . . . . . 10 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅ ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
2119, 20syl6bb 194 . . . . . . . . 9 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅))
2221biimpac 292 . . . . . . . 8 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
23 rabeq0 3274 . . . . . . . . 9 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
24 notrab 3241 . . . . . . . . . 10 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
2524eqeq1i 2088 . . . . . . . . 9 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
261snm 3510 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
27 r19.3rmv 3332 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
2826, 27ax-mp 7 . . . . . . . . 9 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
2923, 25, 283bitr4i 210 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ ¬ ¬ 𝜑)
3022, 29sylib 120 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ¬ ¬ 𝜑)
3130olcd 685 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32 ensym 6284 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
33 elex2 2615 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑤 𝑤𝑛)
34 enm 6317 . . . . . . . 8 ((𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∧ ∃𝑤 𝑤𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
3532, 33, 34syl2an 283 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
36 biidd 170 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜑))
3736elrab 2749 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑦 ∈ {∅} ∧ ¬ 𝜑))
3837simprbi 269 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
3938orcd 684 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4039, 24eleq2s 2173 . . . . . . . 8 (𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4140exlimiv 1529 . . . . . . 7 (∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4235, 41syl 14 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4331, 42jaodan 743 . . . . 5 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4418, 43sylan2 280 . . . 4 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ∈ ω) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4544ancoms 264 . . 3 ((𝑛 ∈ ω ∧ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4645rexlimiva 2472 . 2 (∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4717, 46ax-mp 7 1 𝜑 ∨ ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wo 661  wal 1282   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  {crab 2352  Vcvv 2601  cdif 2970  c0 3251  {csn 3398   class class class wbr 3785  ωcom 4331  cen 6242  Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-er 6129  df-en 6245  df-fin 6247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator