ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2or2exmidlem GIF version

Theorem ordtri2or2exmidlem 4269
Description: A set which is 2𝑜 if 𝜑 or if ¬ 𝜑 is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
ordtri2or2exmidlem {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordtri2or2exmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 495 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → 𝑦𝑧)
2 noel 3255 . . . . . . . . 9 ¬ 𝑦 ∈ ∅
3 eleq2 2142 . . . . . . . . 9 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
42, 3mtbiri 632 . . . . . . . 8 (𝑧 = ∅ → ¬ 𝑦𝑧)
54adantl 271 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → ¬ 𝑦𝑧)
61, 5pm2.21dd 582 . . . . . 6 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
7 eleq2 2142 . . . . . . . . . . 11 (𝑧 = {∅} → (𝑦𝑧𝑦 ∈ {∅}))
87biimpac 292 . . . . . . . . . 10 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {∅})
9 velsn 3415 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
108, 9sylib 120 . . . . . . . . 9 ((𝑦𝑧𝑧 = {∅}) → 𝑦 = ∅)
11 orc 665 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 = ∅ ∨ 𝑦 = {∅}))
12 vex 2604 . . . . . . . . . . 11 𝑦 ∈ V
1312elpr 3419 . . . . . . . . . 10 (𝑦 ∈ {∅, {∅}} ↔ (𝑦 = ∅ ∨ 𝑦 = {∅}))
1411, 13sylibr 132 . . . . . . . . 9 (𝑦 = ∅ → 𝑦 ∈ {∅, {∅}})
1510, 14syl 14 . . . . . . . 8 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {∅, {∅}})
1615adantlr 460 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝑦 ∈ {∅, {∅}})
17 biidd 170 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝜑𝜑))
1817elrab 2749 . . . . . . . . 9 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ↔ (𝑧 ∈ {∅, {∅}} ∧ 𝜑))
1918simprbi 269 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑)
2019ad2antlr 472 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝜑)
21 biidd 170 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜑))
2221elrab 2749 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ↔ (𝑦 ∈ {∅, {∅}} ∧ 𝜑))
2316, 20, 22sylanbrc 408 . . . . . 6 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
24 elrabi 2746 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → 𝑧 ∈ {∅, {∅}})
25 vex 2604 . . . . . . . . 9 𝑧 ∈ V
2625elpr 3419 . . . . . . . 8 (𝑧 ∈ {∅, {∅}} ↔ (𝑧 = ∅ ∨ 𝑧 = {∅}))
2724, 26sylib 120 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → (𝑧 = ∅ ∨ 𝑧 = {∅}))
2827adantl 271 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
296, 23, 28mpjaodan 744 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
3029gen2 1379 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
31 dftr2 3877 . . . 4 (Tr {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}))
3230, 31mpbir 144 . . 3 Tr {𝑥 ∈ {∅, {∅}} ∣ 𝜑}
33 ssrab2 3079 . . 3 {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅, {∅}}
34 2ordpr 4267 . . 3 Ord {∅, {∅}}
35 trssord 4135 . . 3 ((Tr {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∧ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ⊆ {∅, {∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
3632, 33, 34, 35mp3an 1268 . 2 Ord {𝑥 ∈ {∅, {∅}} ∣ 𝜑}
37 pp0ex 3960 . . . 4 {∅, {∅}} ∈ V
3837rabex 3922 . . 3 {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ V
3938elon 4129 . 2 ({𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ On ↔ Ord {𝑥 ∈ {∅, {∅}} ∣ 𝜑})
4036, 39mpbir 144 1 {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  wal 1282   = wceq 1284  wcel 1433  {crab 2352  wss 2973  c0 3251  {csn 3398  {cpr 3399  Tr wtr 3875  Ord word 4117  Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by:  ordtri2or2exmid  4314
  Copyright terms: Public domain W3C validator