Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes GIF version

Theorem bj-bdfindes 10744
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 10742 for explanations. From this version, it is easy to prove the bounded version of findes 4344. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd BOUNDED 𝜑
Assertion
Ref Expression
bj-bdfindes (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)

Proof of Theorem bj-bdfindes
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1461 . . . 4 𝑦𝜑
2 nfv 1461 . . . 4 𝑦[suc 𝑥 / 𝑥]𝜑
31, 2nfim 1504 . . 3 𝑦(𝜑[suc 𝑥 / 𝑥]𝜑)
4 nfs1v 1856 . . . 4 𝑥[𝑦 / 𝑥]𝜑
5 nfsbc1v 2833 . . . 4 𝑥[suc 𝑦 / 𝑥]𝜑
64, 5nfim 1504 . . 3 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
7 sbequ12 1694 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
8 suceq 4157 . . . . 5 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
98sbceq1d 2820 . . . 4 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
107, 9imbi12d 232 . . 3 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
113, 6, 10cbvral 2573 . 2 (∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
12 bj-bdfindes.bd . . 3 BOUNDED 𝜑
13 nfsbc1v 2833 . . 3 𝑥[∅ / 𝑥]𝜑
14 sbceq1a 2824 . . . 4 (𝑥 = ∅ → (𝜑[∅ / 𝑥]𝜑))
1514biimprd 156 . . 3 (𝑥 = ∅ → ([∅ / 𝑥]𝜑𝜑))
16 sbequ1 1691 . . 3 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
17 sbceq1a 2824 . . . 4 (𝑥 = suc 𝑦 → (𝜑[suc 𝑦 / 𝑥]𝜑))
1817biimprd 156 . . 3 (𝑥 = suc 𝑦 → ([suc 𝑦 / 𝑥]𝜑𝜑))
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 10742 . 2 (([∅ / 𝑥]𝜑 ∧ ∀𝑦 ∈ ω ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
2011, 19sylan2b 281 1 (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑[suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  [wsb 1685  wral 2348  [wsbc 2815  c0 3251  suc csuc 4120  ωcom 4331  BOUNDED wbd 10603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator