Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnen2lp GIF version

Theorem bj-nnen2lp 10749
Description: A version of en2lp 4297 for natural numbers, which does not require ax-setind 4280.

Note: using this theorem and bj-nnelirr 10748, one can remove dependency on ax-setind 4280 from nntri2 6096 and nndcel 6101; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-nnen2lp ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))

Proof of Theorem bj-nnen2lp
StepHypRef Expression
1 bj-nnelirr 10748 . . 3 (𝐵 ∈ ω → ¬ 𝐵𝐵)
21adantl 271 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ 𝐵𝐵)
3 bj-nntrans 10746 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
43adantl 271 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
5 ssel 2993 . . . 4 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
64, 5syl6 33 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐵𝐴𝐵𝐵)))
76impd 251 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐵𝐴) → 𝐵𝐵))
82, 7mtod 621 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wcel 1433  wss 2973  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdn 10608  ax-bdal 10609  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-peano4  10750
  Copyright terms: Public domain W3C validator