| Step | Hyp | Ref
| Expression |
| 1 | | noel 3255 |
. 2
⊢ ¬
∅ ∈ ∅ |
| 2 | | df-suc 4126 |
. . . . . 6
⊢ suc 𝑦 = (𝑦 ∪ {𝑦}) |
| 3 | 2 | eleq2i 2145 |
. . . . 5
⊢ (suc
𝑦 ∈ suc 𝑦 ↔ suc 𝑦 ∈ (𝑦 ∪ {𝑦})) |
| 4 | | elun 3113 |
. . . . . 6
⊢ (suc
𝑦 ∈ (𝑦 ∪ {𝑦}) ↔ (suc 𝑦 ∈ 𝑦 ∨ suc 𝑦 ∈ {𝑦})) |
| 5 | | bj-nntrans 10746 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → (suc
𝑦 ∈ 𝑦 → suc 𝑦 ⊆ 𝑦)) |
| 6 | | sucssel 4179 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → (suc
𝑦 ⊆ 𝑦 → 𝑦 ∈ 𝑦)) |
| 7 | 5, 6 | syld 44 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (suc
𝑦 ∈ 𝑦 → 𝑦 ∈ 𝑦)) |
| 8 | | vex 2604 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 9 | 8 | sucid 4172 |
. . . . . . . . 9
⊢ 𝑦 ∈ suc 𝑦 |
| 10 | | elsni 3416 |
. . . . . . . . 9
⊢ (suc
𝑦 ∈ {𝑦} → suc 𝑦 = 𝑦) |
| 11 | 9, 10 | syl5eleq 2167 |
. . . . . . . 8
⊢ (suc
𝑦 ∈ {𝑦} → 𝑦 ∈ 𝑦) |
| 12 | 11 | a1i 9 |
. . . . . . 7
⊢ (𝑦 ∈ ω → (suc
𝑦 ∈ {𝑦} → 𝑦 ∈ 𝑦)) |
| 13 | 7, 12 | jaod 669 |
. . . . . 6
⊢ (𝑦 ∈ ω → ((suc
𝑦 ∈ 𝑦 ∨ suc 𝑦 ∈ {𝑦}) → 𝑦 ∈ 𝑦)) |
| 14 | 4, 13 | syl5bi 150 |
. . . . 5
⊢ (𝑦 ∈ ω → (suc
𝑦 ∈ (𝑦 ∪ {𝑦}) → 𝑦 ∈ 𝑦)) |
| 15 | 3, 14 | syl5bi 150 |
. . . 4
⊢ (𝑦 ∈ ω → (suc
𝑦 ∈ suc 𝑦 → 𝑦 ∈ 𝑦)) |
| 16 | 15 | con3d 593 |
. . 3
⊢ (𝑦 ∈ ω → (¬
𝑦 ∈ 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) |
| 17 | 16 | rgen 2416 |
. 2
⊢
∀𝑦 ∈
ω (¬ 𝑦 ∈
𝑦 → ¬ suc 𝑦 ∈ suc 𝑦) |
| 18 | | ax-bdel 10612 |
. . . 4
⊢
BOUNDED 𝑥 ∈ 𝑥 |
| 19 | 18 | ax-bdn 10608 |
. . 3
⊢
BOUNDED ¬ 𝑥 ∈ 𝑥 |
| 20 | | nfv 1461 |
. . 3
⊢
Ⅎ𝑥 ¬
∅ ∈ ∅ |
| 21 | | nfv 1461 |
. . 3
⊢
Ⅎ𝑥 ¬ 𝑦 ∈ 𝑦 |
| 22 | | nfv 1461 |
. . 3
⊢
Ⅎ𝑥 ¬ suc
𝑦 ∈ suc 𝑦 |
| 23 | | eleq1 2141 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑥 ↔ ∅ ∈ 𝑥)) |
| 24 | | eleq2 2142 |
. . . . . 6
⊢ (𝑥 = ∅ → (∅
∈ 𝑥 ↔ ∅
∈ ∅)) |
| 25 | 23, 24 | bitrd 186 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑥 ↔ ∅ ∈
∅)) |
| 26 | 25 | notbid 624 |
. . . 4
⊢ (𝑥 = ∅ → (¬ 𝑥 ∈ 𝑥 ↔ ¬ ∅ ∈
∅)) |
| 27 | 26 | biimprd 156 |
. . 3
⊢ (𝑥 = ∅ → (¬ ∅
∈ ∅ → ¬ 𝑥 ∈ 𝑥)) |
| 28 | | elequ1 1640 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 29 | | elequ2 1641 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 30 | 28, 29 | bitrd 186 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 31 | 30 | notbid 624 |
. . . 4
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 32 | 31 | biimpd 142 |
. . 3
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑦)) |
| 33 | | eleq1 2141 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ 𝑥 ↔ suc 𝑦 ∈ 𝑥)) |
| 34 | | eleq2 2142 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ suc 𝑦)) |
| 35 | 33, 34 | bitrd 186 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ 𝑥 ↔ suc 𝑦 ∈ suc 𝑦)) |
| 36 | 35 | notbid 624 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ suc 𝑦 ∈ suc 𝑦)) |
| 37 | 36 | biimprd 156 |
. . 3
⊢ (𝑥 = suc 𝑦 → (¬ suc 𝑦 ∈ suc 𝑦 → ¬ 𝑥 ∈ 𝑥)) |
| 38 | | nfcv 2219 |
. . 3
⊢
Ⅎ𝑥𝐴 |
| 39 | | nfv 1461 |
. . 3
⊢
Ⅎ𝑥 ¬ 𝐴 ∈ 𝐴 |
| 40 | | eleq1 2141 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
| 41 | | eleq2 2142 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
| 42 | 40, 41 | bitrd 186 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
| 43 | 42 | notbid 624 |
. . . 4
⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 44 | 43 | biimpd 142 |
. . 3
⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴)) |
| 45 | 19, 20, 21, 22, 27, 32, 37, 38, 39, 44 | bj-bdfindisg 10743 |
. 2
⊢ ((¬
∅ ∈ ∅ ∧ ∀𝑦 ∈ ω (¬ 𝑦 ∈ 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) → (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴)) |
| 46 | 1, 17, 45 | mp2an 416 |
1
⊢ (𝐴 ∈ ω → ¬
𝐴 ∈ 𝐴) |