Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnelirr GIF version

Theorem bj-nnelirr 10748
Description: A natural number does not belong to itself. Version of elirr 4284 for natural numbers, which does not require ax-setind 4280. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnelirr (𝐴 ∈ ω → ¬ 𝐴𝐴)

Proof of Theorem bj-nnelirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3255 . 2 ¬ ∅ ∈ ∅
2 df-suc 4126 . . . . . 6 suc 𝑦 = (𝑦 ∪ {𝑦})
32eleq2i 2145 . . . . 5 (suc 𝑦 ∈ suc 𝑦 ↔ suc 𝑦 ∈ (𝑦 ∪ {𝑦}))
4 elun 3113 . . . . . 6 (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) ↔ (suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}))
5 bj-nntrans 10746 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦 → suc 𝑦𝑦))
6 sucssel 4179 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
75, 6syld 44 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
8 vex 2604 . . . . . . . . . 10 𝑦 ∈ V
98sucid 4172 . . . . . . . . 9 𝑦 ∈ suc 𝑦
10 elsni 3416 . . . . . . . . 9 (suc 𝑦 ∈ {𝑦} → suc 𝑦 = 𝑦)
119, 10syl5eleq 2167 . . . . . . . 8 (suc 𝑦 ∈ {𝑦} → 𝑦𝑦)
1211a1i 9 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦 ∈ {𝑦} → 𝑦𝑦))
137, 12jaod 669 . . . . . 6 (𝑦 ∈ ω → ((suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}) → 𝑦𝑦))
144, 13syl5bi 150 . . . . 5 (𝑦 ∈ ω → (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) → 𝑦𝑦))
153, 14syl5bi 150 . . . 4 (𝑦 ∈ ω → (suc 𝑦 ∈ suc 𝑦𝑦𝑦))
1615con3d 593 . . 3 (𝑦 ∈ ω → (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦))
1716rgen 2416 . 2 𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
18 ax-bdel 10612 . . . 4 BOUNDED 𝑥𝑥
1918ax-bdn 10608 . . 3 BOUNDED ¬ 𝑥𝑥
20 nfv 1461 . . 3 𝑥 ¬ ∅ ∈ ∅
21 nfv 1461 . . 3 𝑥 ¬ 𝑦𝑦
22 nfv 1461 . . 3 𝑥 ¬ suc 𝑦 ∈ suc 𝑦
23 eleq1 2141 . . . . . 6 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ 𝑥))
24 eleq2 2142 . . . . . 6 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2523, 24bitrd 186 . . . . 5 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ ∅))
2625notbid 624 . . . 4 (𝑥 = ∅ → (¬ 𝑥𝑥 ↔ ¬ ∅ ∈ ∅))
2726biimprd 156 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ∅ → ¬ 𝑥𝑥))
28 elequ1 1640 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
29 elequ2 1641 . . . . . 6 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
3028, 29bitrd 186 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
3130notbid 624 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
3231biimpd 142 . . 3 (𝑥 = 𝑦 → (¬ 𝑥𝑥 → ¬ 𝑦𝑦))
33 eleq1 2141 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦𝑥))
34 eleq2 2142 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3533, 34bitrd 186 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3635notbid 624 . . . 4 (𝑥 = suc 𝑦 → (¬ 𝑥𝑥 ↔ ¬ suc 𝑦 ∈ suc 𝑦))
3736biimprd 156 . . 3 (𝑥 = suc 𝑦 → (¬ suc 𝑦 ∈ suc 𝑦 → ¬ 𝑥𝑥))
38 nfcv 2219 . . 3 𝑥𝐴
39 nfv 1461 . . 3 𝑥 ¬ 𝐴𝐴
40 eleq1 2141 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝑥))
41 eleq2 2142 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
4240, 41bitrd 186 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
4342notbid 624 . . . 4 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4443biimpd 142 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 → ¬ 𝐴𝐴))
4519, 20, 21, 22, 27, 32, 37, 38, 39, 44bj-bdfindisg 10743 . 2 ((¬ ∅ ∈ ∅ ∧ ∀𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) → (𝐴 ∈ ω → ¬ 𝐴𝐴))
461, 17, 45mp2an 416 1 (𝐴 ∈ ω → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 661   = wceq 1284  wcel 1433  wral 2348  cun 2971  wss 2973  c0 3251  {csn 3398  suc csuc 4120  ωcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdn 10608  ax-bdal 10609  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-nnen2lp  10749
  Copyright terms: Public domain W3C validator