| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5539 |
. . . . . . 7
⊢ ((𝐴𝐹𝑤) = 𝐵 → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣)) |
| 2 | 1 | adantl 271 |
. . . . . 6
⊢ ((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣)) |
| 3 | 2 | 3ad2ant2 960 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ (𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐵𝐹𝑣)) |
| 4 | | df-3an 921 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆)) |
| 5 | | caovimo.ass |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| 6 | 5 | adantl 271 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| 7 | | simp1 938 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 8 | | simp2 939 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
| 9 | | simp3 940 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) |
| 10 | 6, 7, 8, 9 | caovassd 5680 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝐴𝐹(𝑤𝐹𝑣))) |
| 11 | | caovimo.com |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 12 | 11 | adantl 271 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 13 | 7, 8, 9, 12, 6 | caov12d 5702 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → (𝐴𝐹(𝑤𝐹𝑣)) = (𝑤𝐹(𝐴𝐹𝑣))) |
| 14 | 10, 13 | eqtrd 2113 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝑤𝐹(𝐴𝐹𝑣))) |
| 15 | 14 | adantr 270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = (𝑤𝐹(𝐴𝐹𝑣))) |
| 16 | | oveq2 5540 |
. . . . . . . . . . . 12
⊢ ((𝐴𝐹𝑣) = 𝐵 → (𝑤𝐹(𝐴𝐹𝑣)) = (𝑤𝐹𝐵)) |
| 17 | | oveq1 5539 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝑥𝐹𝐵) = (𝑤𝐹𝐵)) |
| 18 | | id 19 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
| 19 | 17, 18 | eqeq12d 2095 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑤𝐹𝐵) = 𝑤)) |
| 20 | | caovimo.id |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑆 → (𝑥𝐹𝐵) = 𝑥) |
| 21 | 19, 20 | vtoclga 2664 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑆 → (𝑤𝐹𝐵) = 𝑤) |
| 22 | 16, 21 | sylan9eqr 2135 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵) → (𝑤𝐹(𝐴𝐹𝑣)) = 𝑤) |
| 23 | 22 | 3ad2antl2 1101 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → (𝑤𝐹(𝐴𝐹𝑣)) = 𝑤) |
| 24 | 15, 23 | eqtrd 2113 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤) |
| 25 | 4, 24 | sylanbr 279 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑣 ∈ 𝑆) ∧ (𝐴𝐹𝑣) = 𝐵) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤) |
| 26 | 25 | anasss 391 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤) |
| 27 | 26 | 3impa 1133 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤) |
| 28 | 27 | 3adant2r 1164 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ (𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → ((𝐴𝐹𝑤)𝐹𝑣) = 𝑤) |
| 29 | 11 | adantl 271 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑆 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 30 | | caovimo.idel |
. . . . . . . . . 10
⊢ 𝐵 ∈ 𝑆 |
| 31 | 30 | a1i 9 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝑆 → 𝐵 ∈ 𝑆) |
| 32 | | id 19 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ 𝑆) |
| 33 | 29, 31, 32 | caovcomd 5677 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑆 → (𝐵𝐹𝑣) = (𝑣𝐹𝐵)) |
| 34 | | oveq1 5539 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (𝑥𝐹𝐵) = (𝑣𝐹𝐵)) |
| 35 | | id 19 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → 𝑥 = 𝑣) |
| 36 | 34, 35 | eqeq12d 2095 |
. . . . . . . . 9
⊢ (𝑥 = 𝑣 → ((𝑥𝐹𝐵) = 𝑥 ↔ (𝑣𝐹𝐵) = 𝑣)) |
| 37 | 36, 20 | vtoclga 2664 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝑆 → (𝑣𝐹𝐵) = 𝑣) |
| 38 | 33, 37 | eqtrd 2113 |
. . . . . . 7
⊢ (𝑣 ∈ 𝑆 → (𝐵𝐹𝑣) = 𝑣) |
| 39 | 38 | adantr 270 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵) → (𝐵𝐹𝑣) = 𝑣) |
| 40 | 39 | 3ad2ant3 961 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ (𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → (𝐵𝐹𝑣) = 𝑣) |
| 41 | 3, 28, 40 | 3eqtr3d 2121 |
. . . 4
⊢ ((𝐴 ∈ 𝑆 ∧ (𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣) |
| 42 | 41 | 3expib 1141 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣)) |
| 43 | 42 | alrimivv 1796 |
. 2
⊢ (𝐴 ∈ 𝑆 → ∀𝑤∀𝑣(((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣)) |
| 44 | | eleq1 2141 |
. . . 4
⊢ (𝑤 = 𝑣 → (𝑤 ∈ 𝑆 ↔ 𝑣 ∈ 𝑆)) |
| 45 | | oveq2 5540 |
. . . . 5
⊢ (𝑤 = 𝑣 → (𝐴𝐹𝑤) = (𝐴𝐹𝑣)) |
| 46 | 45 | eqeq1d 2089 |
. . . 4
⊢ (𝑤 = 𝑣 → ((𝐴𝐹𝑤) = 𝐵 ↔ (𝐴𝐹𝑣) = 𝐵)) |
| 47 | 44, 46 | anbi12d 456 |
. . 3
⊢ (𝑤 = 𝑣 → ((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ↔ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵))) |
| 48 | 47 | mo4 2002 |
. 2
⊢
(∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ↔ ∀𝑤∀𝑣(((𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵) ∧ (𝑣 ∈ 𝑆 ∧ (𝐴𝐹𝑣) = 𝐵)) → 𝑤 = 𝑣)) |
| 49 | 43, 48 | sylibr 132 |
1
⊢ (𝐴 ∈ 𝑆 → ∃*𝑤(𝑤 ∈ 𝑆 ∧ (𝐴𝐹𝑤) = 𝐵)) |