![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr3d | GIF version |
Description: A deduction from three chained equalities. (Contributed by NM, 4-Aug-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr3d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eqtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eqtr3d | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 3eqtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 1, 2 | eqtr3d 2115 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 3eqtr3d.3 | . 2 ⊢ (𝜑 → 𝐵 = 𝐷) | |
5 | 3, 4 | eqtr3d 2115 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 |
This theorem is referenced by: mpteqb 5282 fvmptt 5283 fsnunfv 5384 f1ocnvfv1 5437 f1ocnvfv2 5438 fcof1 5443 caov12d 5702 caov13d 5704 caov411d 5706 caovimo 5714 grprinvlem 5715 grprinvd 5716 grpridd 5717 tfrlem5 5953 tfrlemiubacc 5967 nndir 6092 fopwdom 6333 addassnqg 6572 distrnqg 6577 enq0tr 6624 distrnq0 6649 distnq0r 6653 addnqprl 6719 addnqpru 6720 appdivnq 6753 ltmprr 6832 addcmpblnr 6916 mulcmpblnrlemg 6917 ltsrprg 6924 1idsr 6945 pn0sr 6948 mulgt0sr 6954 axmulass 7039 ax0id 7044 recriota 7056 mul12 7237 mul4 7240 readdcan 7248 add12 7266 cnegexlem2 7284 addcan 7288 ppncan 7350 addsub4 7351 subaddeqd 7473 muladd 7488 mulcanapd 7751 receuap 7759 div13ap 7781 divdivdivap 7801 divcanap5 7802 divdivap1 7811 divdivap2 7812 halfaddsub 8265 fztp 9095 fseq1p1m1 9111 flqzadd 9300 flqdiv 9323 mulp1mod1 9367 modqnegd 9381 modqsub12d 9383 q2submod 9387 modsumfzodifsn 9398 iseqm1 9447 iseqcaopr 9462 exprecap 9517 expsubap 9524 zesq 9591 nn0opthlem1d 9647 facnn2 9661 faclbnd6 9671 shftval3 9715 crre 9744 resub 9757 imsub 9765 cjsub 9779 climshft2 10145 gcdaddm 10375 modgcd 10382 bezoutlemnewy 10385 absmulgcd 10406 gcdmultiplez 10410 eucialg 10441 lcmgcd 10460 lcmid 10462 qdencn 10785 |
Copyright terms: Public domain | W3C validator |