ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriotav GIF version

Theorem cbvriotav 5499
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvriotav.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotav (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvriotav
StepHypRef Expression
1 nfv 1461 . 2 𝑦𝜑
2 nfv 1461 . 2 𝑥𝜓
3 cbvriotav.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvriota 5498 1 (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-sn 3404  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  axcaucvg  7066
  Copyright terms: Public domain W3C validator