ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqd GIF version

Theorem cnveqd 4529
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
Hypothesis
Ref Expression
cnveqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
cnveqd (𝜑𝐴 = 𝐵)

Proof of Theorem cnveqd
StepHypRef Expression
1 cnveqd.1 . 2 (𝜑𝐴 = 𝐵)
2 cnveq 4527 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2syl 14 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-br 3786  df-opab 3840  df-cnv 4371
This theorem is referenced by:  cnvsng  4826  cores2  4853  suppssof1  5748  2ndval2  5803  2nd1st  5826  cnvf1olem  5865  brtpos2  5889  dftpos4  5901  tpostpos  5902  tposf12  5907  xpcomco  6323  infeq123d  6429
  Copyright terms: Public domain W3C validator