![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnveqi | GIF version |
Description: Equality inference for converse. (Contributed by NM, 23-Dec-2008.) |
Ref | Expression |
---|---|
cnveqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
cnveqi | ⊢ ◡𝐴 = ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | cnveq 4527 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ◡𝐴 = ◡𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ◡ccnv 4362 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 df-br 3786 df-opab 3840 df-cnv 4371 |
This theorem is referenced by: cnvxp 4762 xp0 4763 imainrect 4786 cnvcnv 4793 mptpreima 4834 co01 4855 coi2 4857 fcoi1 5090 fun11iun 5167 f1ocnvd 5722 cnvoprab 5875 f1od2 5876 |
Copyright terms: Public domain | W3C validator |