ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveq GIF version

Theorem cnveq 4527
Description: Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
cnveq (𝐴 = 𝐵𝐴 = 𝐵)

Proof of Theorem cnveq
StepHypRef Expression
1 cnvss 4526 . . 3 (𝐴𝐵𝐴𝐵)
2 cnvss 4526 . . 3 (𝐵𝐴𝐵𝐴)
31, 2anim12i 331 . 2 ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴))
4 eqss 3014 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 eqss 3014 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53imtr4i 199 1 (𝐴 = 𝐵𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wss 2973  ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-in 2979  df-ss 2986  df-br 3786  df-opab 3840  df-cnv 4371
This theorem is referenced by:  cnveqi  4528  cnveqd  4529  rneq  4579  cnveqb  4796  funcnvuni  4988  f1eq1  5107  f1o00  5181  foeqcnvco  5450  tposfn2  5904  ereq1  6136  infeq3  6428
  Copyright terms: Public domain W3C validator