![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ndval2 | GIF version |
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
Ref | Expression |
---|---|
2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 4420 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 2604 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2604 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | op2nd 5794 | . . . . 5 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
5 | 2, 3 | op2ndb 4824 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} = 𝑦 |
6 | 4, 5 | eqtr4i 2104 | . . . 4 ⊢ (2nd ‘〈𝑥, 𝑦〉) = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} |
7 | fveq2 5198 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = (2nd ‘〈𝑥, 𝑦〉)) | |
8 | sneq 3409 | . . . . . . . 8 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | |
9 | 8 | cnveqd 4529 | . . . . . . 7 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ◡{𝐴} = ◡{〈𝑥, 𝑦〉}) |
10 | 9 | inteqd 3641 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ◡{𝐴} = ∩ ◡{〈𝑥, 𝑦〉}) |
11 | 10 | inteqd 3641 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
12 | 11 | inteqd 3641 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
13 | 6, 7, 12 | 3eqtr4a 2139 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
14 | 13 | exlimivv 1817 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
15 | 1, 14 | sylbi 119 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 {csn 3398 〈cop 3401 ∩ cint 3636 × cxp 4361 ◡ccnv 4362 ‘cfv 4922 2nd c2nd 5786 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fv 4930 df-2nd 5788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |