![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvsn | GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
cnvsn | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvsn 4817 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = ◡{〈𝐴, 𝐵〉} | |
2 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | cnvsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | relsnop 4462 | . . 3 ⊢ Rel {〈𝐵, 𝐴〉} |
5 | dfrel2 4791 | . . 3 ⊢ (Rel {〈𝐵, 𝐴〉} ↔ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉}) | |
6 | 4, 5 | mpbi 143 | . 2 ⊢ ◡◡{〈𝐵, 𝐴〉} = {〈𝐵, 𝐴〉} |
7 | 1, 6 | eqtr3i 2103 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∈ wcel 1433 Vcvv 2601 {csn 3398 〈cop 3401 ◡ccnv 4362 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 |
This theorem is referenced by: op2ndb 4824 cnvsng 4826 f1osn 5186 |
Copyright terms: Public domain | W3C validator |