ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnvsn GIF version

Theorem cnvcnvsn 4817
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 4823, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4723 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 4723 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 2604 . . . 4 𝑦 ∈ V
4 vex 2604 . . . 4 𝑥 ∈ V
53, 4opelcnv 4535 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 262 . . . . . 6 ((𝑦 = 𝐴𝑥 = 𝐵) ↔ (𝑥 = 𝐵𝑦 = 𝐴))
73, 4opth 3992 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑦 = 𝐴𝑥 = 𝐵))
84, 3opth 3992 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐴))
96, 7, 83bitr4i 210 . . . . 5 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
103, 4opex 3984 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1110elsn 3414 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
124, 3opex 3984 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 3414 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 210 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 4535 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 4535 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 210 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 182 . 2 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 4452 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wcel 1433  {csn 3398  cop 3401  ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371
This theorem is referenced by:  rnsnopg  4819  cnvsn  4823
  Copyright terms: Public domain W3C validator