ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvti GIF version

Theorem cnvti 6432
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypothesis
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Assertion
Ref Expression
cnvti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣

Proof of Theorem cnvti
StepHypRef Expression
1 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 ancom 262 . . 3 ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))
31, 2syl6bb 194 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
4 brcnvg 4534 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑢𝑅𝑣𝑣𝑅𝑢))
54notbid 624 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢))
6 brcnvg 4534 . . . . . 6 ((𝑣𝐴𝑢𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
76ancoms 264 . . . . 5 ((𝑢𝐴𝑣𝐴) → (𝑣𝑅𝑢𝑢𝑅𝑣))
87notbid 624 . . . 4 ((𝑢𝐴𝑣𝐴) → (¬ 𝑣𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣))
95, 8anbi12d 456 . . 3 ((𝑢𝐴𝑣𝐴) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
109adantl 271 . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)))
113, 10bitr4d 189 1 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wcel 1433   class class class wbr 3785  ccnv 4362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371
This theorem is referenced by:  eqinfti  6433  infvalti  6435  infclti  6436  inflbti  6437  infglbti  6438  infmoti  6441  infsnti  6443  infisoti  6445  infrenegsupex  8682
  Copyright terms: Public domain W3C validator