![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvti | GIF version |
Description: If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
Ref | Expression |
---|---|
cnvti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqinfti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | ancom 262 | . . 3 ⊢ ((¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣)) | |
3 | 1, 2 | syl6bb 194 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
4 | brcnvg 4534 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢◡𝑅𝑣 ↔ 𝑣𝑅𝑢)) | |
5 | 4 | notbid 624 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑢◡𝑅𝑣 ↔ ¬ 𝑣𝑅𝑢)) |
6 | brcnvg 4534 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) | |
7 | 6 | ancoms 264 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑣◡𝑅𝑢 ↔ 𝑢𝑅𝑣)) |
8 | 7 | notbid 624 | . . . 4 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (¬ 𝑣◡𝑅𝑢 ↔ ¬ 𝑢𝑅𝑣)) |
9 | 5, 8 | anbi12d 456 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
10 | 9 | adantl 271 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → ((¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢) ↔ (¬ 𝑣𝑅𝑢 ∧ ¬ 𝑢𝑅𝑣))) |
11 | 3, 10 | bitr4d 189 | 1 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢◡𝑅𝑣 ∧ ¬ 𝑣◡𝑅𝑢))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1433 class class class wbr 3785 ◡ccnv 4362 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 |
This theorem is referenced by: eqinfti 6433 infvalti 6435 infclti 6436 inflbti 6437 infglbti 6438 infmoti 6441 infsnti 6443 infisoti 6445 infrenegsupex 8682 |
Copyright terms: Public domain | W3C validator |