ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex GIF version

Theorem infrenegsupex 8682
Description: The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
infrenegsupex.ss (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
infrenegsupex (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infrenegsupex
Dummy variables 𝑓 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7191 . . . . . 6 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 271 . . . . 5 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 infrenegsupex.ex . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infclti 6436 . . . 4 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℝ)
54recnd 7147 . . 3 (𝜑 → inf(𝐴, ℝ, < ) ∈ ℂ)
65negnegd 7410 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < ))
7 negeq 7301 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑤 = -𝑧)
87cbvmptv 3873 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧)
98mptpreima 4834 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧𝐴}
10 eqid 2081 . . . . . . . . . 10 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1110negiso 8033 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ∧ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
1211simpri 111 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
1312imaeq1i 4685 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
149, 13eqtr3i 2103 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
1514supeq1i 6401 . . . . 5 sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < )
1611simpli 109 . . . . . . . . 9 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
17 isocnv 5471 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1816, 17ax-mp 7 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
19 isoeq1 5461 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)))
2012, 19ax-mp 7 . . . . . . . 8 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
2118, 20mpbi 143 . . . . . . 7 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
2221a1i 9 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
23 infrenegsupex.ss . . . . . 6 (𝜑𝐴 ⊆ ℝ)
243cnvinfex 6431 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
252cnvti 6432 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
2622, 23, 24, 25supisoti 6423 . . . . 5 (𝜑 → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
2715, 26syl5eq 2125 . . . 4 (𝜑 → sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
28 df-inf 6398 . . . . . . 7 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2928eqcomi 2085 . . . . . 6 sup(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )
3029fveq2i 5201 . . . . 5 ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < ))
31 eqidd 2082 . . . . . 6 (𝜑 → (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
32 negeq 7301 . . . . . . 7 (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < ))
3332adantl 271 . . . . . 6 ((𝜑𝑤 = inf(𝐴, ℝ, < )) → -𝑤 = -inf(𝐴, ℝ, < ))
345negcld 7406 . . . . . 6 (𝜑 → -inf(𝐴, ℝ, < ) ∈ ℂ)
3531, 33, 4, 34fvmptd 5274 . . . . 5 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3630, 35syl5eq 2125 . . . 4 (𝜑 → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
3727, 36eqtr2d 2114 . . 3 (𝜑 → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
3837negeqd 7303 . 2 (𝜑 → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
396, 38eqtr3d 2115 1 (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wral 2348  wrex 2349  {crab 2352  wss 2973   class class class wbr 3785  cmpt 3839  ccnv 4362  cima 4366  cfv 4922   Isom wiso 4923  supcsup 6395  infcinf 6396  cc 6979  cr 6980   < clt 7153  -cneg 7280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-apti 7091  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-isom 4931  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sup 6397  df-inf 6398  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282
This theorem is referenced by:  supminfex  8685  minmax  10112  infssuzcldc  10347
  Copyright terms: Public domain W3C validator