![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3d | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3d.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | notnot 591 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 33 | . 2 ⊢ (𝜑 → (𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con2d 586 | 1 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 576 ax-in2 577 |
This theorem is referenced by: con3rr3 595 con3dimp 596 con3 603 nsyld 609 nsyli 610 mth8 611 notbid 624 impidc 788 bijadc 809 pm2.13dc 812 xoranor 1308 mo2n 1969 necon3ad 2287 necon3bd 2288 ssneld 3001 sscon 3106 difrab 3238 eunex 4304 ndmfvg 5225 nnaord 6105 nnmord 6113 php5 6344 php5dom 6349 supmoti 6406 prubl 6676 letr 7194 prodge0 7932 lt2msq 7964 nnge1 8062 nzadd 8403 irradd 8731 irrmul 8732 xrletr 8878 frec2uzf1od 9408 zesq 9591 expcanlem 9643 nn0opthd 9649 bccmpl 9681 maxleast 10099 dvdsbnd 10348 prm2orodd 10508 coprm 10523 prmndvdsfaclt 10535 bj-notbi 10716 bj-nnelirr 10748 |
Copyright terms: Public domain | W3C validator |