ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast GIF version

Theorem maxleast 10099
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)

Proof of Theorem maxleast
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 701 . . . 4 (¬ (𝐶 < 𝐴𝐶 < 𝐵) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵))
2 simp3 940 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
3 lttri3 7191 . . . . . . . . 9 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
43adantl 271 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5 maxabslemval 10094 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
6 3anass 923 . . . . . . . . . . 11 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
75, 6sylib 120 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
8 breq1 3788 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑥 < 𝑦 ↔ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
98notbid 624 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (¬ 𝑥 < 𝑦 ↔ ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
109ralbidv 2368 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦))
11 breq2 3789 . . . . . . . . . . . . . 14 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (𝑦 < 𝑥𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2)))
1211imbi1d 229 . . . . . . . . . . . . 13 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1312ralbidv 2368 . . . . . . . . . . . 12 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
1410, 13anbi12d 456 . . . . . . . . . . 11 (𝑥 = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))))
1514rspcev 2701 . . . . . . . . . 10 (((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
167, 15syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
17163adant3 958 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝐴, 𝐵}𝑦 < 𝑧)))
184, 17suplubti 6413 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
192, 18mpand 419 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → ∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧))
20 elpri 3421 . . . . . . . . 9 (𝑧 ∈ {𝐴, 𝐵} → (𝑧 = 𝐴𝑧 = 𝐵))
2120adantr 270 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝑧 = 𝐵))
22 breq2 3789 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐶 < 𝑧𝐶 < 𝐴))
2322biimpcd 157 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐴𝐶 < 𝐴))
2423adantl 271 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐴𝐶 < 𝐴))
25 breq2 3789 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝐶 < 𝑧𝐶 < 𝐵))
2625biimpcd 157 . . . . . . . . . 10 (𝐶 < 𝑧 → (𝑧 = 𝐵𝐶 < 𝐵))
2726adantl 271 . . . . . . . . 9 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝑧 = 𝐵𝐶 < 𝐵))
2824, 27orim12d 732 . . . . . . . 8 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → ((𝑧 = 𝐴𝑧 = 𝐵) → (𝐶 < 𝐴𝐶 < 𝐵)))
2921, 28mpd 13 . . . . . . 7 ((𝑧 ∈ {𝐴, 𝐵} ∧ 𝐶 < 𝑧) → (𝐶 < 𝐴𝐶 < 𝐵))
3029rexlimiva 2472 . . . . . 6 (∃𝑧 ∈ {𝐴, 𝐵}𝐶 < 𝑧 → (𝐶 < 𝐴𝐶 < 𝐵))
3119, 30syl6 33 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < sup({𝐴, 𝐵}, ℝ, < ) → (𝐶 < 𝐴𝐶 < 𝐵)))
3231con3d 593 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐶 < 𝐴𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
331, 32syl5bir 151 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵) → ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
34 simp1 938 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
3534, 2lenltd 7227 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ ¬ 𝐶 < 𝐴))
36 simp2 939 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3736, 2lenltd 7227 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵𝐶 ↔ ¬ 𝐶 < 𝐵))
3835, 37anbi12d 456 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) ↔ (¬ 𝐶 < 𝐴 ∧ ¬ 𝐶 < 𝐵)))
394, 17supclti 6411 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
4039, 2lenltd 7227 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ ¬ 𝐶 < sup({𝐴, 𝐵}, ℝ, < )))
4133, 38, 403imtr4d 201 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐵𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶))
4241imp 122 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  wral 2348  wrex 2349  {cpr 3399   class class class wbr 3785  cfv 4922  (class class class)co 5532  supcsup 6395  cr 6980   + caddc 6984   < clt 7153  cle 7154  cmin 7279   / cdiv 7760  2c2 8089  abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by:  maxleastb  10100  dfabsmax  10103
  Copyright terms: Public domain W3C validator