![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foun | GIF version |
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
foun | ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 5128 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
2 | fofn 5128 | . . . 4 ⊢ (𝐺:𝐶–onto→𝐷 → 𝐺 Fn 𝐶) | |
3 | 1, 2 | anim12i 331 | . . 3 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶)) |
4 | fnun 5025 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐶) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) | |
5 | 3, 4 | sylan 277 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶)) |
6 | rnun 4752 | . . 3 ⊢ ran (𝐹 ∪ 𝐺) = (ran 𝐹 ∪ ran 𝐺) | |
7 | forn 5129 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | ad2antrr 471 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐹 = 𝐵) |
9 | forn 5129 | . . . . 5 ⊢ (𝐺:𝐶–onto→𝐷 → ran 𝐺 = 𝐷) | |
10 | 9 | ad2antlr 472 | . . . 4 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran 𝐺 = 𝐷) |
11 | 8, 10 | uneq12d 3127 | . . 3 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵 ∪ 𝐷)) |
12 | 6, 11 | syl5eq 2125 | . 2 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷)) |
13 | df-fo 4928 | . 2 ⊢ ((𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷) ↔ ((𝐹 ∪ 𝐺) Fn (𝐴 ∪ 𝐶) ∧ ran (𝐹 ∪ 𝐺) = (𝐵 ∪ 𝐷))) | |
14 | 5, 12, 13 | sylanbrc 408 | 1 ⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺:𝐶–onto→𝐷) ∧ (𝐴 ∩ 𝐶) = ∅) → (𝐹 ∪ 𝐺):(𝐴 ∪ 𝐶)–onto→(𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∪ cun 2971 ∩ cin 2972 ∅c0 3251 ran crn 4364 Fn wfn 4917 –onto→wfo 4920 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-id 4048 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |