ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniabio GIF version

Theorem uniabio 4897
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2192 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
21biimpi 118 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
3 df-sn 3404 . . . 4 {𝑦} = {𝑥𝑥 = 𝑦}
42, 3syl6eqr 2131 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
54unieqd 3612 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
6 vex 2604 . . 3 𝑦 ∈ V
76unisn 3617 . 2 {𝑦} = 𝑦
85, 7syl6eq 2129 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1282   = wceq 1284  {cab 2067  {csn 3398   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602
This theorem is referenced by:  iotaval  4898  iotauni  4899
  Copyright terms: Public domain W3C validator