![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfimafn | GIF version |
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
dfimafn | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 2993 | . . . . . 6 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
2 | funbrfvb 5237 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
3 | 2 | ex 113 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
4 | 1, 3 | syl9r 72 | . . . . 5 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
5 | 4 | imp31 252 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
6 | 5 | rexbidva 2365 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
7 | 6 | abbidv 2196 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦}) |
8 | dfima2 4690 | . 2 ⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦} | |
9 | 7, 8 | syl6reqr 2132 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {cab 2067 ∃wrex 2349 ⊆ wss 2973 class class class wbr 3785 dom cdm 4363 “ cima 4366 Fun wfun 4916 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 |
This theorem is referenced by: dfimafn2 5244 fvelimab 5250 |
Copyright terms: Public domain | W3C validator |