ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab GIF version

Theorem fvelimab 5250
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fvelimab
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2610 . . . 4 (𝐶 ∈ (𝐹𝐵) → 𝐶 ∈ V)
21anim2i 334 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ (𝐹𝐵)) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
3 ssel2 2994 . . . . . . . 8 ((𝐵𝐴𝑢𝐵) → 𝑢𝐴)
4 funfvex 5212 . . . . . . . . 9 ((Fun 𝐹𝑢 ∈ dom 𝐹) → (𝐹𝑢) ∈ V)
54funfni 5019 . . . . . . . 8 ((𝐹 Fn 𝐴𝑢𝐴) → (𝐹𝑢) ∈ V)
63, 5sylan2 280 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑢𝐵)) → (𝐹𝑢) ∈ V)
76anassrs 392 . . . . . 6 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → (𝐹𝑢) ∈ V)
8 eleq1 2141 . . . . . 6 ((𝐹𝑢) = 𝐶 → ((𝐹𝑢) ∈ V ↔ 𝐶 ∈ V))
97, 8syl5ibcom 153 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑢𝐵) → ((𝐹𝑢) = 𝐶𝐶 ∈ V))
109rexlimdva 2477 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑢𝐵 (𝐹𝑢) = 𝐶𝐶 ∈ V))
1110imdistani 433 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ ∃𝑢𝐵 (𝐹𝑢) = 𝐶) → ((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V))
12 eleq1 2141 . . . . . . 7 (𝑣 = 𝐶 → (𝑣 ∈ (𝐹𝐵) ↔ 𝐶 ∈ (𝐹𝐵)))
13 eqeq2 2090 . . . . . . . 8 (𝑣 = 𝐶 → ((𝐹𝑢) = 𝑣 ↔ (𝐹𝑢) = 𝐶))
1413rexbidv 2369 . . . . . . 7 (𝑣 = 𝐶 → (∃𝑢𝐵 (𝐹𝑢) = 𝑣 ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
1512, 14bibi12d 233 . . . . . 6 (𝑣 = 𝐶 → ((𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣) ↔ (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
1615imbi2d 228 . . . . 5 (𝑣 = 𝐶 → (((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))))
17 fnfun 5016 . . . . . . . 8 (𝐹 Fn 𝐴 → Fun 𝐹)
1817adantr 270 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → Fun 𝐹)
19 fndm 5018 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2019sseq2d 3027 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹𝐵𝐴))
2120biimpar 291 . . . . . . 7 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ⊆ dom 𝐹)
22 dfimafn 5243 . . . . . . 7 ((Fun 𝐹𝐵 ⊆ dom 𝐹) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2318, 21, 22syl2anc 403 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) = {𝑣 ∣ ∃𝑢𝐵 (𝐹𝑢) = 𝑣})
2423abeq2d 2191 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑣 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝑣))
2516, 24vtoclg 2658 . . . 4 (𝐶 ∈ V → ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶)))
2625impcom 123 . . 3 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
272, 11, 26pm5.21nd 858 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑢𝐵 (𝐹𝑢) = 𝐶))
28 fveq2 5198 . . . 4 (𝑢 = 𝑥 → (𝐹𝑢) = (𝐹𝑥))
2928eqeq1d 2089 . . 3 (𝑢 = 𝑥 → ((𝐹𝑢) = 𝐶 ↔ (𝐹𝑥) = 𝐶))
3029cbvrexv 2578 . 2 (∃𝑢𝐵 (𝐹𝑢) = 𝐶 ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶)
3127, 30syl6bb 194 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {cab 2067  wrex 2349  Vcvv 2601  wss 2973  dom cdm 4363  cima 4366  Fun wfun 4916   Fn wfn 4917  cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by:  ssimaex  5255  rexima  5415  ralima  5416  f1elima  5433  ovelimab  5671
  Copyright terms: Public domain W3C validator