ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpt GIF version

Theorem dmmpt 4836
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpt dom 𝐹 = {𝑥𝐴𝐵 ∈ V}

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 4545 . 2 dom 𝐹 = ran 𝐹
2 dfrn4 4801 . 2 ran 𝐹 = (𝐹 “ V)
3 dmmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptpreima 4834 . 2 (𝐹 “ V) = {𝑥𝐴𝐵 ∈ V}
51, 2, 43eqtri 2105 1 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wcel 1433  {crab 2352  Vcvv 2601  cmpt 3839  ccnv 4362  dom cdm 4363  ran crn 4364  cima 4366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376
This theorem is referenced by:  dmmptss  4837  dmmptg  4838  fvmptssdm  5276  isnumi  6451
  Copyright terms: Public domain W3C validator