ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecinxp GIF version

Theorem ecinxp 6204
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 108 . . . . . . . 8 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → 𝐵𝐴)
21snssd 3530 . . . . . . 7 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
3 df-ss 2986 . . . . . . 7 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
42, 3sylib 120 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ({𝐵} ∩ 𝐴) = {𝐵})
54imaeq2d 4688 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵}))
65ineq1d 3166 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴))
7 imass2 4721 . . . . . . 7 ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
82, 7syl 14 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
9 simpl 107 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅𝐴) ⊆ 𝐴)
108, 9sstrd 3009 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴)
11 df-ss 2986 . . . . 5 ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
1210, 11sylib 120 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
136, 12eqtr2d 2114 . . 3 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴))
14 imainrect 4786 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)
1513, 14syl6eqr 2131 . 2 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}))
16 df-ec 6131 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
17 df-ec 6131 . 2 [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})
1815, 16, 173eqtr4g 2138 1 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cin 2972  wss 2973  {csn 3398   × cxp 4361  cima 4366  [cec 6127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-ec 6131
This theorem is referenced by:  qsinxp  6205  nqnq0pi  6628
  Copyright terms: Public domain W3C validator