ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioc2 GIF version

Theorem elioc2 8959
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 7164 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elioc1 8945 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
31, 2sylan2 280 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
4 mnfxr 8848 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
6 simpll 495 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 944 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
8 mnfle 8867 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
98ad2antrr 471 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ≤ 𝐴)
10 simpr2 945 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 < 𝐶)
115, 6, 7, 9, 10xrlelttrd 8880 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ < 𝐶)
121ad2antlr 472 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 8846 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
15 simpr3 946 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶𝐵)
16 ltpnf 8856 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1716ad2antlr 472 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 < +∞)
187, 12, 14, 15, 17xrlelttrd 8880 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 < +∞)
19 xrrebnd 8886 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 885 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1118 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
2322ex 113 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
24 rexr 7164 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1124 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
2623, 25impbid1 140 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
273, 26bitrd 186 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  +∞cpnf 7150  -∞cmnf 7151  *cxr 7152   < clt 7153  cle 7154  (,]cioc 8912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-ioc 8916
This theorem is referenced by:  iocssre  8976
  Copyright terms: Public domain W3C validator