ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreldm GIF version

Theorem elreldm 4578
Description: The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
Assertion
Ref Expression
elreldm ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)

Proof of Theorem elreldm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rel 4370 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
2 ssel 2993 . . . . 5 (𝐴 ⊆ (V × V) → (𝐵𝐴𝐵 ∈ (V × V)))
31, 2sylbi 119 . . . 4 (Rel 𝐴 → (𝐵𝐴𝐵 ∈ (V × V)))
4 elvv 4420 . . . 4 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4syl6ib 159 . . 3 (Rel 𝐴 → (𝐵𝐴 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩))
6 eleq1 2141 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
7 vex 2604 . . . . . . 7 𝑥 ∈ V
8 vex 2604 . . . . . . 7 𝑦 ∈ V
97, 8opeldm 4556 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
106, 9syl6bi 161 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴𝑥 ∈ dom 𝐴))
11 inteq 3639 . . . . . . . 8 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
1211inteqd 3641 . . . . . . 7 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥, 𝑦⟩)
137, 8op1stb 4227 . . . . . . 7 𝑥, 𝑦⟩ = 𝑥
1412, 13syl6eq 2129 . . . . . 6 (𝐵 = ⟨𝑥, 𝑦⟩ → 𝐵 = 𝑥)
1514eleq1d 2147 . . . . 5 (𝐵 = ⟨𝑥, 𝑦⟩ → ( 𝐵 ∈ dom 𝐴𝑥 ∈ dom 𝐴))
1610, 15sylibrd 167 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1716exlimivv 1817 . . 3 (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ → (𝐵𝐴 𝐵 ∈ dom 𝐴))
185, 17syli 37 . 2 (Rel 𝐴 → (𝐵𝐴 𝐵 ∈ dom 𝐴))
1918imp 122 1 ((Rel 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  wss 2973  cop 3401   cint 3636   × cxp 4361  dom cdm 4363  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-int 3637  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-dm 4373
This theorem is referenced by:  1stdm  5828  fundmen  6309
  Copyright terms: Public domain W3C validator