ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn2 GIF version

Theorem elrn2 4594
Description: Membership in a range. (Contributed by NM, 10-Jul-1994.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elrn.1 . 2 𝐴 ∈ V
2 opeq2 3571 . . . 4 (𝑦 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐴⟩)
32eleq1d 2147 . . 3 (𝑦 = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
43exbidv 1746 . 2 (𝑦 = 𝐴 → (∃𝑥𝑥, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵))
5 dfrn3 4542 . 2 ran 𝐵 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐵}
61, 4, 5elab2 2741 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cop 3401  ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  elrn  4595  dmrnssfld  4613  rniun  4754  rnxpid  4775  ssrnres  4783  relssdmrn  4861
  Copyright terms: Public domain W3C validator