| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrn2 | GIF version | ||
| Description: Membership in a range. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn2 | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opeq2 3571 | . . . 4 ⊢ (𝑦 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐴〉) | |
| 3 | 2 | eleq1d 2147 | . . 3 ⊢ (𝑦 = 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐵 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 4 | 3 | exbidv 1746 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
| 5 | dfrn3 4542 | . 2 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐵} | |
| 6 | 1, 4, 5 | elab2 2741 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 〈cop 3401 ran crn 4364 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: elrn 4595 dmrnssfld 4613 rniun 4754 rnxpid 4775 ssrnres 4783 relssdmrn 4861 |
| Copyright terms: Public domain | W3C validator |