| Step | Hyp | Ref
| Expression |
| 1 | | inss2 3187 |
. . . . 5
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
| 2 | | rnss 4582 |
. . . . 5
⊢ ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)) |
| 3 | 1, 2 | ax-mp 7 |
. . . 4
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) |
| 4 | | rnxpss 4774 |
. . . 4
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
| 5 | 3, 4 | sstri 3008 |
. . 3
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵 |
| 6 | | eqss 3014 |
. . 3
⊢ (ran
(𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))) |
| 7 | 5, 6 | mpbiran 881 |
. 2
⊢ (ran
(𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))) |
| 8 | | ssid 3018 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝐴 |
| 9 | | ssv 3019 |
. . . . . . . 8
⊢ 𝐵 ⊆ V |
| 10 | | xpss12 4463 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) |
| 11 | 8, 9, 10 | mp2an 416 |
. . . . . . 7
⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
| 12 | | sslin 3192 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V))) |
| 13 | 11, 12 | ax-mp 7 |
. . . . . 6
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V)) |
| 14 | | df-res 4375 |
. . . . . 6
⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) |
| 15 | 13, 14 | sseqtr4i 3032 |
. . . . 5
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ↾ 𝐴) |
| 16 | | rnss 4582 |
. . . . 5
⊢ ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ↾ 𝐴) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴)) |
| 17 | 15, 16 | ax-mp 7 |
. . . 4
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴) |
| 18 | | sstr 3007 |
. . . 4
⊢ ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴)) → 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
| 19 | 17, 18 | mpan2 415 |
. . 3
⊢ (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
| 20 | | ssel 2993 |
. . . . . . 7
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → 𝑦 ∈ ran (𝐶 ↾ 𝐴))) |
| 21 | | vex 2604 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 22 | 21 | elrn2 4594 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴)) |
| 23 | 20, 22 | syl6ib 159 |
. . . . . 6
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴))) |
| 24 | 23 | ancrd 319 |
. . . . 5
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵))) |
| 25 | 21 | elrn2 4594 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵))) |
| 26 | | elin 3155 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) |
| 27 | | opelxp 4392 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 28 | 27 | anbi2i 444 |
. . . . . . . 8
⊢
((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 29 | 21 | opelres 4635 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴)) |
| 30 | 29 | anbi1i 445 |
. . . . . . . . 9
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ ((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 31 | | anass 393 |
. . . . . . . . 9
⊢
(((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 32 | 30, 31 | bitr2i 183 |
. . . . . . . 8
⊢
((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 33 | 26, 28, 32 | 3bitri 204 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 34 | 33 | exbii 1536 |
. . . . . 6
⊢
(∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 35 | | 19.41v 1823 |
. . . . . 6
⊢
(∃𝑥(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 36 | 25, 34, 35 | 3bitri 204 |
. . . . 5
⊢ (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
| 37 | 24, 36 | syl6ibr 160 |
. . . 4
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → 𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)))) |
| 38 | 37 | ssrdv 3005 |
. . 3
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))) |
| 39 | 19, 38 | impbii 124 |
. 2
⊢ (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
| 40 | 7, 39 | bitr2i 183 |
1
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) |