ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres GIF version

Theorem ssrnres 4783
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem ssrnres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3187 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
2 rnss 4582 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵))
31, 2ax-mp 7 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
4 rnxpss 4774 . . . 4 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4sstri 3008 . . 3 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵
6 eqss 3014 . . 3 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))))
75, 6mpbiran 881 . 2 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
8 ssid 3018 . . . . . . . 8 𝐴𝐴
9 ssv 3019 . . . . . . . 8 𝐵 ⊆ V
10 xpss12 4463 . . . . . . . 8 ((𝐴𝐴𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V))
118, 9, 10mp2an 416 . . . . . . 7 (𝐴 × 𝐵) ⊆ (𝐴 × V)
12 sslin 3192 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V)))
1311, 12ax-mp 7 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V))
14 df-res 4375 . . . . . 6 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
1513, 14sseqtr4i 3032 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴)
16 rnss 4582 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴))
1715, 16ax-mp 7 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)
18 sstr 3007 . . . 4 ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)) → 𝐵 ⊆ ran (𝐶𝐴))
1917, 18mpan2 415 . . 3 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶𝐴))
20 ssel 2993 . . . . . . 7 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶𝐴)))
21 vex 2604 . . . . . . . 8 𝑦 ∈ V
2221elrn2 4594 . . . . . . 7 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))
2320, 22syl6ib 159 . . . . . 6 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2423ancrd 319 . . . . 5 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵)))
2521elrn2 4594 . . . . . 6 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)))
26 elin 3155 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
27 opelxp 4392 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2827anbi2i 444 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
2921opelres 4635 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴))
3029anbi1i 445 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵))
31 anass 393 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
3230, 31bitr2i 183 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3326, 28, 323bitri 204 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3433exbii 1536 . . . . . 6 (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
35 19.41v 1823 . . . . . 6 (∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3625, 34, 353bitri 204 . . . . 5 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3724, 36syl6ibr 160 . . . 4 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵))))
3837ssrdv 3005 . . 3 (𝐵 ⊆ ran (𝐶𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
3919, 38impbii 124 . 2 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶𝐴))
407, 39bitr2i 183 1 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cin 2972  wss 2973  cop 3401   × cxp 4361  ran crn 4364  cres 4365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375
This theorem is referenced by:  rninxp  4784
  Copyright terms: Public domain W3C validator